Homotopy of area decreasing maps by mean curvature flow

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)455-473
Seitenumfang19
FachzeitschriftAdvances in mathematics
Jahrgang255
PublikationsstatusVeröffentlicht - 1 Apr. 2014

Abstract

Let f : M → N be a smooth area decreasing map between two Riemannian manifolds (M, gM) and (N, gN). Under weak and natural assumptions on the curvatures of (M, gM) and (N, gN), we prove that the mean curvature flow provides a smooth homotopy of f to a constant map.

ASJC Scopus Sachgebiete

Zitieren

Homotopy of area decreasing maps by mean curvature flow. / Savas-Halilaj, Andreas; Smoczyk, Knut.
in: Advances in mathematics, Jahrgang 255, 01.04.2014, S. 455-473.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Savas-Halilaj A, Smoczyk K. Homotopy of area decreasing maps by mean curvature flow. Advances in mathematics. 2014 Apr 1;255:455-473. doi: 10.1016/j.aim.2014.01.014
Savas-Halilaj, Andreas ; Smoczyk, Knut. / Homotopy of area decreasing maps by mean curvature flow. in: Advances in mathematics. 2014 ; Jahrgang 255. S. 455-473.
Download
@article{25e7748f0478442199db4dff756053c5,
title = "Homotopy of area decreasing maps by mean curvature flow",
abstract = "Let f : M → N be a smooth area decreasing map between two Riemannian manifolds (M, gM) and (N, gN). Under weak and natural assumptions on the curvatures of (M, gM) and (N, gN), we prove that the mean curvature flow provides a smooth homotopy of f to a constant map.",
keywords = "Area decreasing, Graphs, Homotopy, Maximum principle, Mean curvature flow",
author = "Andreas Savas-Halilaj and Knut Smoczyk",
year = "2014",
month = apr,
day = "1",
doi = "10.1016/j.aim.2014.01.014",
language = "English",
volume = "255",
pages = "455--473",
journal = "Advances in mathematics",
issn = "0001-8708",
publisher = "Academic Press Inc.",

}

Download

TY - JOUR

T1 - Homotopy of area decreasing maps by mean curvature flow

AU - Savas-Halilaj, Andreas

AU - Smoczyk, Knut

PY - 2014/4/1

Y1 - 2014/4/1

N2 - Let f : M → N be a smooth area decreasing map between two Riemannian manifolds (M, gM) and (N, gN). Under weak and natural assumptions on the curvatures of (M, gM) and (N, gN), we prove that the mean curvature flow provides a smooth homotopy of f to a constant map.

AB - Let f : M → N be a smooth area decreasing map between two Riemannian manifolds (M, gM) and (N, gN). Under weak and natural assumptions on the curvatures of (M, gM) and (N, gN), we prove that the mean curvature flow provides a smooth homotopy of f to a constant map.

KW - Area decreasing

KW - Graphs

KW - Homotopy

KW - Maximum principle

KW - Mean curvature flow

UR - http://www.scopus.com/inward/record.url?scp=84893424143&partnerID=8YFLogxK

U2 - 10.1016/j.aim.2014.01.014

DO - 10.1016/j.aim.2014.01.014

M3 - Article

AN - SCOPUS:84893424143

VL - 255

SP - 455

EP - 473

JO - Advances in mathematics

JF - Advances in mathematics

SN - 0001-8708

ER -

Von denselben Autoren