Details
Originalsprache | Englisch |
---|---|
Seitenumfang | 14 |
Fachzeitschrift | Water resources research |
Jahrgang | 41 |
Ausgabenummer | 2 |
Publikationsstatus | Veröffentlicht - 9 Feb. 2005 |
Extern publiziert | Ja |
Abstract
Large-scale modeling of transient flow in the unsaturated zone is important for the estimation of the water budget and solute transport in the vadose zone. Upscaled flow models need to capture the impact of small-scale heterogeneities, which are not resolved by the model, on large-scale flow. We perform upscaling of the Richards equation in heterogeneous porous media with continuous distributions of the soil hydraulic parameters using homogenization theory and stochastic averaging techniques. We restrict the analysis to flow regimes in which the capillary-equilibrium assumption holds on the small scale. In order to account for effects of capillary entry pressure we apply the Brooks-Corey model for the soil retention and relative permeability curves and consider Leverett scaling for the coupling of intrinsic permeability and entry pressure. For this model we derive and analyze the ensemble-averaged parameter functions for the macroscopic flow equations. The effects of a definite entry pressure vanish with increasing variance of the log intrinsic permeability. We compare the statistically averaged parameter functions to numerically calculated effective functions for parameter fields with different connectivity properties. These results illustrate that soils with well-connected coarse materials differ in the relative permeability from those with well-connected fine materials or those without particular connectedness.
ASJC Scopus Sachgebiete
- Umweltwissenschaften (insg.)
- Gewässerkunde und -technologie
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Water resources research, Jahrgang 41, Nr. 2, 09.02.2005.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Homogenization of Richards equation in permeability fields with different connectivities
AU - Neuweiler, Insa
AU - Cirpka, Olaf A.
PY - 2005/2/9
Y1 - 2005/2/9
N2 - Large-scale modeling of transient flow in the unsaturated zone is important for the estimation of the water budget and solute transport in the vadose zone. Upscaled flow models need to capture the impact of small-scale heterogeneities, which are not resolved by the model, on large-scale flow. We perform upscaling of the Richards equation in heterogeneous porous media with continuous distributions of the soil hydraulic parameters using homogenization theory and stochastic averaging techniques. We restrict the analysis to flow regimes in which the capillary-equilibrium assumption holds on the small scale. In order to account for effects of capillary entry pressure we apply the Brooks-Corey model for the soil retention and relative permeability curves and consider Leverett scaling for the coupling of intrinsic permeability and entry pressure. For this model we derive and analyze the ensemble-averaged parameter functions for the macroscopic flow equations. The effects of a definite entry pressure vanish with increasing variance of the log intrinsic permeability. We compare the statistically averaged parameter functions to numerically calculated effective functions for parameter fields with different connectivity properties. These results illustrate that soils with well-connected coarse materials differ in the relative permeability from those with well-connected fine materials or those without particular connectedness.
AB - Large-scale modeling of transient flow in the unsaturated zone is important for the estimation of the water budget and solute transport in the vadose zone. Upscaled flow models need to capture the impact of small-scale heterogeneities, which are not resolved by the model, on large-scale flow. We perform upscaling of the Richards equation in heterogeneous porous media with continuous distributions of the soil hydraulic parameters using homogenization theory and stochastic averaging techniques. We restrict the analysis to flow regimes in which the capillary-equilibrium assumption holds on the small scale. In order to account for effects of capillary entry pressure we apply the Brooks-Corey model for the soil retention and relative permeability curves and consider Leverett scaling for the coupling of intrinsic permeability and entry pressure. For this model we derive and analyze the ensemble-averaged parameter functions for the macroscopic flow equations. The effects of a definite entry pressure vanish with increasing variance of the log intrinsic permeability. We compare the statistically averaged parameter functions to numerically calculated effective functions for parameter fields with different connectivity properties. These results illustrate that soils with well-connected coarse materials differ in the relative permeability from those with well-connected fine materials or those without particular connectedness.
UR - http://www.scopus.com/inward/record.url?scp=15444367652&partnerID=8YFLogxK
U2 - 10.1029/2004WR003329
DO - 10.1029/2004WR003329
M3 - Article
AN - SCOPUS:15444367652
VL - 41
JO - Water resources research
JF - Water resources research
SN - 0043-1397
IS - 2
ER -