High-rate atomic layer deposition of Al2O3 for the surface passivation of Si solar cells

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Florian Werner
  • Walter Stals
  • Roger Görtzen
  • Boris Veith
  • Rolf Brendel
  • Jan Schmidt

Organisationseinheiten

Externe Organisationen

  • Institut für Solarenergieforschung GmbH (ISFH)
  • SoLayTec
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)301-306
Seitenumfang6
FachzeitschriftEnergy Procedia
Jahrgang8
Frühes Online-Datum12 Aug. 2011
PublikationsstatusVeröffentlicht - 2011

Abstract

High-rate spatial atomic layer deposition (ALD) enables an industrially relevant deposition of high-quality aluminum oxide (Al2O3) films for the surface passivation of silicon solar cells. We demonstrate a homogeneous surface passivation at a deposition rate of ∼30 nm/min on 15.6×15.6 cm2 silicon wafers of 10 nm thick Al 2O3 layers deposited in a novel inline spatial ALD system. The effective surface recombination velocity on n-type Czochralski-grown (Cz) silicon wafers is shown to be virtually independent of injection level. Surface recombination velocities below 2.9 cm/s and an extremely low interface state density below 8×1010 eV-1cm-2 are achieved. We demonstrate that the novel inline spatial ALD system provides the means to integrate Al2O3 passivation layers into industrial solar cells.

ASJC Scopus Sachgebiete

Zitieren

High-rate atomic layer deposition of Al2O3 for the surface passivation of Si solar cells. / Werner, Florian; Stals, Walter; Görtzen, Roger et al.
in: Energy Procedia, Jahrgang 8, 2011, S. 301-306.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Werner, F, Stals, W, Görtzen, R, Veith, B, Brendel, R & Schmidt, J 2011, 'High-rate atomic layer deposition of Al2O3 for the surface passivation of Si solar cells', Energy Procedia, Jg. 8, S. 301-306. https://doi.org/10.1016/j.egypro.2011.06.140
Werner, F., Stals, W., Görtzen, R., Veith, B., Brendel, R., & Schmidt, J. (2011). High-rate atomic layer deposition of Al2O3 for the surface passivation of Si solar cells. Energy Procedia, 8, 301-306. https://doi.org/10.1016/j.egypro.2011.06.140
Werner F, Stals W, Görtzen R, Veith B, Brendel R, Schmidt J. High-rate atomic layer deposition of Al2O3 for the surface passivation of Si solar cells. Energy Procedia. 2011;8:301-306. Epub 2011 Aug 12. doi: 10.1016/j.egypro.2011.06.140
Werner, Florian ; Stals, Walter ; Görtzen, Roger et al. / High-rate atomic layer deposition of Al2O3 for the surface passivation of Si solar cells. in: Energy Procedia. 2011 ; Jahrgang 8. S. 301-306.
Download
@article{fe75e148adb6447aad33978247ba27ab,
title = "High-rate atomic layer deposition of Al2O3 for the surface passivation of Si solar cells",
abstract = "High-rate spatial atomic layer deposition (ALD) enables an industrially relevant deposition of high-quality aluminum oxide (Al2O3) films for the surface passivation of silicon solar cells. We demonstrate a homogeneous surface passivation at a deposition rate of ∼30 nm/min on 15.6×15.6 cm2 silicon wafers of 10 nm thick Al 2O3 layers deposited in a novel inline spatial ALD system. The effective surface recombination velocity on n-type Czochralski-grown (Cz) silicon wafers is shown to be virtually independent of injection level. Surface recombination velocities below 2.9 cm/s and an extremely low interface state density below 8×1010 eV-1cm-2 are achieved. We demonstrate that the novel inline spatial ALD system provides the means to integrate Al2O3 passivation layers into industrial solar cells.",
keywords = "Aluminum oxide, Silicon, Spatial ALD, Surface passivation",
author = "Florian Werner and Walter Stals and Roger G{\"o}rtzen and Boris Veith and Rolf Brendel and Jan Schmidt",
year = "2011",
doi = "10.1016/j.egypro.2011.06.140",
language = "English",
volume = "8",
pages = "301--306",

}

Download

TY - JOUR

T1 - High-rate atomic layer deposition of Al2O3 for the surface passivation of Si solar cells

AU - Werner, Florian

AU - Stals, Walter

AU - Görtzen, Roger

AU - Veith, Boris

AU - Brendel, Rolf

AU - Schmidt, Jan

PY - 2011

Y1 - 2011

N2 - High-rate spatial atomic layer deposition (ALD) enables an industrially relevant deposition of high-quality aluminum oxide (Al2O3) films for the surface passivation of silicon solar cells. We demonstrate a homogeneous surface passivation at a deposition rate of ∼30 nm/min on 15.6×15.6 cm2 silicon wafers of 10 nm thick Al 2O3 layers deposited in a novel inline spatial ALD system. The effective surface recombination velocity on n-type Czochralski-grown (Cz) silicon wafers is shown to be virtually independent of injection level. Surface recombination velocities below 2.9 cm/s and an extremely low interface state density below 8×1010 eV-1cm-2 are achieved. We demonstrate that the novel inline spatial ALD system provides the means to integrate Al2O3 passivation layers into industrial solar cells.

AB - High-rate spatial atomic layer deposition (ALD) enables an industrially relevant deposition of high-quality aluminum oxide (Al2O3) films for the surface passivation of silicon solar cells. We demonstrate a homogeneous surface passivation at a deposition rate of ∼30 nm/min on 15.6×15.6 cm2 silicon wafers of 10 nm thick Al 2O3 layers deposited in a novel inline spatial ALD system. The effective surface recombination velocity on n-type Czochralski-grown (Cz) silicon wafers is shown to be virtually independent of injection level. Surface recombination velocities below 2.9 cm/s and an extremely low interface state density below 8×1010 eV-1cm-2 are achieved. We demonstrate that the novel inline spatial ALD system provides the means to integrate Al2O3 passivation layers into industrial solar cells.

KW - Aluminum oxide

KW - Silicon

KW - Spatial ALD

KW - Surface passivation

UR - http://www.scopus.com/inward/record.url?scp=80052084033&partnerID=8YFLogxK

U2 - 10.1016/j.egypro.2011.06.140

DO - 10.1016/j.egypro.2011.06.140

M3 - Article

AN - SCOPUS:80052084033

VL - 8

SP - 301

EP - 306

JO - Energy Procedia

JF - Energy Procedia

SN - 1876-6102

ER -

Von denselben Autoren