Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 3673-3687 |
Seitenumfang | 15 |
Fachzeitschrift | International Journal of Solids and Structures |
Jahrgang | 38 |
Ausgabenummer | 21 |
Publikationsstatus | Veröffentlicht - 11 Apr. 2001 |
Extern publiziert | Ja |
Abstract
First order shear deformation theory renders quite accurate in-plane stresses even for rather thick plates. By means of equilibrium conditions derivatives of the in-plane stresses can be integrated to determine transverse shear and normal stresses. The need to use in-plane derivatives requires at least cubic shape functions. Simplifying assumptions relieve these requirements leading to the extended 2D method. While under mechanical load this method yields excellent results, poor transverse normal stresses have been obtained for plates under a sinusoidal temperature distribution. This paper traces back these deficiencies to lentil-like deformations of each separate layer. It is proved that third or fifth order displacement approximations through the plate thickness avoid these deficiencies.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Modellierung und Simulation
- Werkstoffwissenschaften (insg.)
- Physik und Astronomie (insg.)
- Physik der kondensierten Materie
- Ingenieurwesen (insg.)
- Werkstoffmechanik
- Ingenieurwesen (insg.)
- Maschinenbau
- Mathematik (insg.)
- Angewandte Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: International Journal of Solids and Structures, Jahrgang 38, Nr. 21, 11.04.2001, S. 3673-3687.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - High-order theories for thermal stresses in layered plates
AU - Rohwer, Klaus
AU - Rolfes, Raimund
AU - Sparr, Holger
PY - 2001/4/11
Y1 - 2001/4/11
N2 - First order shear deformation theory renders quite accurate in-plane stresses even for rather thick plates. By means of equilibrium conditions derivatives of the in-plane stresses can be integrated to determine transverse shear and normal stresses. The need to use in-plane derivatives requires at least cubic shape functions. Simplifying assumptions relieve these requirements leading to the extended 2D method. While under mechanical load this method yields excellent results, poor transverse normal stresses have been obtained for plates under a sinusoidal temperature distribution. This paper traces back these deficiencies to lentil-like deformations of each separate layer. It is proved that third or fifth order displacement approximations through the plate thickness avoid these deficiencies.
AB - First order shear deformation theory renders quite accurate in-plane stresses even for rather thick plates. By means of equilibrium conditions derivatives of the in-plane stresses can be integrated to determine transverse shear and normal stresses. The need to use in-plane derivatives requires at least cubic shape functions. Simplifying assumptions relieve these requirements leading to the extended 2D method. While under mechanical load this method yields excellent results, poor transverse normal stresses have been obtained for plates under a sinusoidal temperature distribution. This paper traces back these deficiencies to lentil-like deformations of each separate layer. It is proved that third or fifth order displacement approximations through the plate thickness avoid these deficiencies.
KW - Laminated composites
KW - Lentil-like deformations
KW - Plates
KW - Thermal loads
KW - Transverse stresses
UR - http://www.scopus.com/inward/record.url?scp=0035337523&partnerID=8YFLogxK
U2 - 10.1016/S0020-7683(00)00249-3
DO - 10.1016/S0020-7683(00)00249-3
M3 - Article
AN - SCOPUS:0035337523
VL - 38
SP - 3673
EP - 3687
JO - International Journal of Solids and Structures
JF - International Journal of Solids and Structures
SN - 0020-7683
IS - 21
ER -