Details
Originalsprache | Englisch |
---|---|
Titel des Sammelwerks | Quantum Information and Measurement, QIM 2019 |
Herausgeber (Verlag) | OSA - The Optical Society |
ISBN (Print) | 9781943580569 |
Publikationsstatus | Veröffentlicht - 2019 |
Extern publiziert | Ja |
Veranstaltung | Quantum Information and Measurement, QIM 2019 - Rome, Italien Dauer: 4 Apr. 2019 → 6 Apr. 2019 |
Publikationsreihe
Name | Optics InfoBase Conference Papers |
---|---|
Band | Part F165-QIM 2019 |
Abstract
By introducing and modifying two-photon hyper-entangled states in the time-frequency domain using an on-chip micro-cavity, we succeed in generating high-dimensional cluster states, demonstrate d-level measurement-based quantum processing and show the state's higher noise tolerance.
ASJC Scopus Sachgebiete
- Werkstoffwissenschaften (insg.)
- Elektronische, optische und magnetische Materialien
- Ingenieurwesen (insg.)
- Werkstoffmechanik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
Quantum Information and Measurement, QIM 2019. OSA - The Optical Society, 2019. (Optics InfoBase Conference Papers; Band Part F165-QIM 2019).
Publikation: Beitrag in Buch/Bericht/Sammelwerk/Konferenzband › Aufsatz in Konferenzband › Forschung › Peer-Review
}
TY - GEN
T1 - High-dimensional one-way quantum processing enabled by optical d-level cluster states
AU - Kues, Michael
AU - Reimer, Christian
AU - Sciara, Stefania
AU - Roztocki, Piotr
AU - Islam, Mehedi
AU - Cortés, Luis Romero
AU - Zhang, Yanbing
AU - Fischer, Bennet
AU - Loranger, Sébastien
AU - Kashyap, Raman
AU - Cino, Alfonso
AU - Chu, Sai T.
AU - Little, Brent E.
AU - Moss, David J.
AU - Caspani, Lucia
AU - Munro, William J.
AU - Azaña, José
AU - Morandotti, Roberto
N1 - Publisher Copyright: © OSA 2019 © 2019 The Author(s) Copyright: Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2019
Y1 - 2019
N2 - By introducing and modifying two-photon hyper-entangled states in the time-frequency domain using an on-chip micro-cavity, we succeed in generating high-dimensional cluster states, demonstrate d-level measurement-based quantum processing and show the state's higher noise tolerance.
AB - By introducing and modifying two-photon hyper-entangled states in the time-frequency domain using an on-chip micro-cavity, we succeed in generating high-dimensional cluster states, demonstrate d-level measurement-based quantum processing and show the state's higher noise tolerance.
UR - http://www.scopus.com/inward/record.url?scp=85085639047&partnerID=8YFLogxK
U2 - 10.1364/qim.2019.s2c.3
DO - 10.1364/qim.2019.s2c.3
M3 - Conference contribution
AN - SCOPUS:85085639047
SN - 9781943580569
T3 - Optics InfoBase Conference Papers
BT - Quantum Information and Measurement, QIM 2019
PB - OSA - The Optical Society
T2 - Quantum Information and Measurement, QIM 2019
Y2 - 4 April 2019 through 6 April 2019
ER -