Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 100257 |
Fachzeitschrift | FlatChem |
Jahrgang | 28 |
Frühes Online-Datum | 6 Juni 2021 |
Publikationsstatus | Veröffentlicht - Juli 2021 |
Abstract
In a latest experimental advance, graphene-like and insulating BeO monolayer was successfully grown over silver surface by molecular beam epitaxy (ACS Nano 15(2021), 2497). Inspired by this accomplishment, in this work we conduct first-principles based simulations to explore the electronic, mechanical properties and thermal conductivity of graphene-like BeO, MgO and CaO monolayers. The considered nanosheets are found to show desirable thermal and dynamical stability. BeO monolayer is found to show remarkably high elastic modulus and tensile strength of 408 and 53.3 GPa, respectively. The electronic band gap of BeO, MgO and CaO monolayers are predicted to be 6.72, 4.79, and 3.80 eV, respectively, using the HSE06 functional. On the basis of iterative solution of the Boltzmann transport equation, the room temperature lattice thermal conductivity of BeO, MgO and CaO monolayers are predicted to be 385, 64 and 15 W/mK, respectively. Our results reveal substantial decline in the electronic band gap, mechanical strength and thermal conductivity by increasing the weight of metal atoms. This work highlights outstandingly high thermal conductivity, carrier mobility and mechanical strength of insulating BeO nanosheets and suggest them as promising candidates to design strong and insulating components with high thermal conductivities.
ASJC Scopus Sachgebiete
- Werkstoffwissenschaften (insg.)
- Elektronische, optische und magnetische Materialien
- Werkstoffwissenschaften (insg.)
- Keramische und Verbundwerkstoffe
- Werkstoffwissenschaften (insg.)
- Oberflächen, Beschichtungen und Folien
- Werkstoffwissenschaften (insg.)
- Werkstoffchemie
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: FlatChem, Jahrgang 28, 100257, 07.2021.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - High tensile strength and thermal conductivity in BeO monolayer
T2 - A first-principles study
AU - Mortazavi, Bohayra
AU - Shojaei, Fazel
AU - Rabczuk, Timon
AU - Zhuang, Xiaoying
N1 - Funding Information: B.M. and X.Z. appreciate the funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy within the Cluster of Excellence PhoenixD (EXC 2122, Project ID 390833453). B. M and T. R. are greatly thankful to the VEGAS cluster at Bauhaus University of Weimar for providing the computational resources. F.S. thanks the Persian Gulf University Research Council for support of this study. The data that support the findings of this study are available from the corresponding author upon reasonable request.
PY - 2021/7
Y1 - 2021/7
N2 - In a latest experimental advance, graphene-like and insulating BeO monolayer was successfully grown over silver surface by molecular beam epitaxy (ACS Nano 15(2021), 2497). Inspired by this accomplishment, in this work we conduct first-principles based simulations to explore the electronic, mechanical properties and thermal conductivity of graphene-like BeO, MgO and CaO monolayers. The considered nanosheets are found to show desirable thermal and dynamical stability. BeO monolayer is found to show remarkably high elastic modulus and tensile strength of 408 and 53.3 GPa, respectively. The electronic band gap of BeO, MgO and CaO monolayers are predicted to be 6.72, 4.79, and 3.80 eV, respectively, using the HSE06 functional. On the basis of iterative solution of the Boltzmann transport equation, the room temperature lattice thermal conductivity of BeO, MgO and CaO monolayers are predicted to be 385, 64 and 15 W/mK, respectively. Our results reveal substantial decline in the electronic band gap, mechanical strength and thermal conductivity by increasing the weight of metal atoms. This work highlights outstandingly high thermal conductivity, carrier mobility and mechanical strength of insulating BeO nanosheets and suggest them as promising candidates to design strong and insulating components with high thermal conductivities.
AB - In a latest experimental advance, graphene-like and insulating BeO monolayer was successfully grown over silver surface by molecular beam epitaxy (ACS Nano 15(2021), 2497). Inspired by this accomplishment, in this work we conduct first-principles based simulations to explore the electronic, mechanical properties and thermal conductivity of graphene-like BeO, MgO and CaO monolayers. The considered nanosheets are found to show desirable thermal and dynamical stability. BeO monolayer is found to show remarkably high elastic modulus and tensile strength of 408 and 53.3 GPa, respectively. The electronic band gap of BeO, MgO and CaO monolayers are predicted to be 6.72, 4.79, and 3.80 eV, respectively, using the HSE06 functional. On the basis of iterative solution of the Boltzmann transport equation, the room temperature lattice thermal conductivity of BeO, MgO and CaO monolayers are predicted to be 385, 64 and 15 W/mK, respectively. Our results reveal substantial decline in the electronic band gap, mechanical strength and thermal conductivity by increasing the weight of metal atoms. This work highlights outstandingly high thermal conductivity, carrier mobility and mechanical strength of insulating BeO nanosheets and suggest them as promising candidates to design strong and insulating components with high thermal conductivities.
KW - 2D materials
KW - Insulator
KW - Mechanical
KW - Semiconductor
KW - Thermal conductivity
UR - http://www.scopus.com/inward/record.url?scp=85107673633&partnerID=8YFLogxK
U2 - 10.48550/arXiv.2106.03416
DO - 10.48550/arXiv.2106.03416
M3 - Article
AN - SCOPUS:85107673633
VL - 28
JO - FlatChem
JF - FlatChem
M1 - 100257
ER -