Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 7023-7032 |
Seitenumfang | 10 |
Fachzeitschrift | Analytical chemistry |
Jahrgang | 86 |
Ausgabenummer | 14 |
Publikationsstatus | Veröffentlicht - 27 Juni 2014 |
Abstract
We present a high kinetic energy ion mobility spectrometer (HiKE-IMS) for quantitative gas analysis. Drift tube and reaction tube can be operated at reduced fields up to 110 Td. At such conditions the distribution of reactant ion water clusters is shifted toward smaller clusters. Due to the resulting presence of bare reactant ions (e.g., H3O+) and the kinetic control of the ionization process with decreasing reaction time, unlike conventional IMS, a quantitative detection with ppbv detection limits of low proton affine analytes even in humid gas mixtures containing high proton affine compounds is possible using a direct sample gas inlet. A significantly improved dynamic range compared to conventional IMS is achieved. An incremental change in reduced fields enables the observation of parameters like field dependent ion mobilites or analyte fragmentation. Also, the characteristic of the analyte signal with respect to the reduced reaction field gives insight into the ionization process of the analyte. Thus, HiKE-IMS enables substance identification by ion mobility and additional analytical information that are not observed with conventional IMS. The instrumental effort is similar to conventional desktop IMS with overall dimensions of the drift and reaction tube of 4 cm × 4 cm × 28.5 cm. However, the mobility resolution is limited and between 30 and 40. Because of the moisture independent ionization and the decrease in competing ion-molecule reactions, no preseparation or membrane inlet is necessary when the compounds of interest are distinguishable either by a significant difference in ion mobility or the additional analytical information.
ASJC Scopus Sachgebiete
- Chemie (insg.)
- Analytische Chemie
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Analytical chemistry, Jahrgang 86, Nr. 14, 27.06.2014, S. 7023-7032.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - High Kinetic Energy Ion Mobility Spectrometer
T2 - Quantitative Analysis of Gas Mixtures with Ion Mobility Spectrometry
AU - Langejuergen, Jens
AU - Allers, Maria
AU - Oermann, Jens
AU - Kirk, Ansgar
AU - Zimmermann, Stefan
PY - 2014/6/27
Y1 - 2014/6/27
N2 - We present a high kinetic energy ion mobility spectrometer (HiKE-IMS) for quantitative gas analysis. Drift tube and reaction tube can be operated at reduced fields up to 110 Td. At such conditions the distribution of reactant ion water clusters is shifted toward smaller clusters. Due to the resulting presence of bare reactant ions (e.g., H3O+) and the kinetic control of the ionization process with decreasing reaction time, unlike conventional IMS, a quantitative detection with ppbv detection limits of low proton affine analytes even in humid gas mixtures containing high proton affine compounds is possible using a direct sample gas inlet. A significantly improved dynamic range compared to conventional IMS is achieved. An incremental change in reduced fields enables the observation of parameters like field dependent ion mobilites or analyte fragmentation. Also, the characteristic of the analyte signal with respect to the reduced reaction field gives insight into the ionization process of the analyte. Thus, HiKE-IMS enables substance identification by ion mobility and additional analytical information that are not observed with conventional IMS. The instrumental effort is similar to conventional desktop IMS with overall dimensions of the drift and reaction tube of 4 cm × 4 cm × 28.5 cm. However, the mobility resolution is limited and between 30 and 40. Because of the moisture independent ionization and the decrease in competing ion-molecule reactions, no preseparation or membrane inlet is necessary when the compounds of interest are distinguishable either by a significant difference in ion mobility or the additional analytical information.
AB - We present a high kinetic energy ion mobility spectrometer (HiKE-IMS) for quantitative gas analysis. Drift tube and reaction tube can be operated at reduced fields up to 110 Td. At such conditions the distribution of reactant ion water clusters is shifted toward smaller clusters. Due to the resulting presence of bare reactant ions (e.g., H3O+) and the kinetic control of the ionization process with decreasing reaction time, unlike conventional IMS, a quantitative detection with ppbv detection limits of low proton affine analytes even in humid gas mixtures containing high proton affine compounds is possible using a direct sample gas inlet. A significantly improved dynamic range compared to conventional IMS is achieved. An incremental change in reduced fields enables the observation of parameters like field dependent ion mobilites or analyte fragmentation. Also, the characteristic of the analyte signal with respect to the reduced reaction field gives insight into the ionization process of the analyte. Thus, HiKE-IMS enables substance identification by ion mobility and additional analytical information that are not observed with conventional IMS. The instrumental effort is similar to conventional desktop IMS with overall dimensions of the drift and reaction tube of 4 cm × 4 cm × 28.5 cm. However, the mobility resolution is limited and between 30 and 40. Because of the moisture independent ionization and the decrease in competing ion-molecule reactions, no preseparation or membrane inlet is necessary when the compounds of interest are distinguishable either by a significant difference in ion mobility or the additional analytical information.
UR - http://www.scopus.com/inward/record.url?scp=84904280292&partnerID=8YFLogxK
U2 - 10.1021/ac5011662
DO - 10.1021/ac5011662
M3 - Article
AN - SCOPUS:84904280292
VL - 86
SP - 7023
EP - 7032
JO - Analytical chemistry
JF - Analytical chemistry
SN - 0003-2700
IS - 14
ER -