Hierarchical zinc oxide materials with multiple porosity prepared by ultrafast temperature gradient chemical gas-phase synthesis

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Stefan Dilger
  • Carlos Lizandara-Pueyo
  • Michael Krumm
  • Sebastian Polarz

Externe Organisationen

  • Universität Konstanz
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)543-548
Seitenumfang6
FachzeitschriftAdvanced materials
Jahrgang24
Ausgabenummer4
Frühes Online-Datum17 Jan. 2012
PublikationsstatusVeröffentlicht - 24 Jan. 2012
Extern publiziertJa

Abstract

The preparation of materials characterized by three types of porosity could be prepared by a continuous chemical gas-phase method. The multistep formation mechanism involves a critical temperature gradient and occurs within seconds. The resulting hollow aerogel materials show superior properties as gas sensors in comparison to materials constructed from compact nanoparticles.

ASJC Scopus Sachgebiete

Zitieren

Hierarchical zinc oxide materials with multiple porosity prepared by ultrafast temperature gradient chemical gas-phase synthesis. / Dilger, Stefan; Lizandara-Pueyo, Carlos; Krumm, Michael et al.
in: Advanced materials, Jahrgang 24, Nr. 4, 24.01.2012, S. 543-548.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Dilger S, Lizandara-Pueyo C, Krumm M, Polarz S. Hierarchical zinc oxide materials with multiple porosity prepared by ultrafast temperature gradient chemical gas-phase synthesis. Advanced materials. 2012 Jan 24;24(4):543-548. Epub 2012 Jan 17. doi: 10.1002/adma.201103557
Dilger, Stefan ; Lizandara-Pueyo, Carlos ; Krumm, Michael et al. / Hierarchical zinc oxide materials with multiple porosity prepared by ultrafast temperature gradient chemical gas-phase synthesis. in: Advanced materials. 2012 ; Jahrgang 24, Nr. 4. S. 543-548.
Download
@article{ea048d981d7e4c62baa3be97de972e9a,
title = "Hierarchical zinc oxide materials with multiple porosity prepared by ultrafast temperature gradient chemical gas-phase synthesis",
abstract = "The preparation of materials characterized by three types of porosity could be prepared by a continuous chemical gas-phase method. The multistep formation mechanism involves a critical temperature gradient and occurs within seconds. The resulting hollow aerogel materials show superior properties as gas sensors in comparison to materials constructed from compact nanoparticles.",
keywords = "aerogels, gas-sensing, metal oxides, porous materials, semiconductors",
author = "Stefan Dilger and Carlos Lizandara-Pueyo and Michael Krumm and Sebastian Polarz",
year = "2012",
month = jan,
day = "24",
doi = "10.1002/adma.201103557",
language = "English",
volume = "24",
pages = "543--548",
journal = "Advanced materials",
issn = "0935-9648",
publisher = "Wiley-Blackwell",
number = "4",

}

Download

TY - JOUR

T1 - Hierarchical zinc oxide materials with multiple porosity prepared by ultrafast temperature gradient chemical gas-phase synthesis

AU - Dilger, Stefan

AU - Lizandara-Pueyo, Carlos

AU - Krumm, Michael

AU - Polarz, Sebastian

PY - 2012/1/24

Y1 - 2012/1/24

N2 - The preparation of materials characterized by three types of porosity could be prepared by a continuous chemical gas-phase method. The multistep formation mechanism involves a critical temperature gradient and occurs within seconds. The resulting hollow aerogel materials show superior properties as gas sensors in comparison to materials constructed from compact nanoparticles.

AB - The preparation of materials characterized by three types of porosity could be prepared by a continuous chemical gas-phase method. The multistep formation mechanism involves a critical temperature gradient and occurs within seconds. The resulting hollow aerogel materials show superior properties as gas sensors in comparison to materials constructed from compact nanoparticles.

KW - aerogels

KW - gas-sensing

KW - metal oxides

KW - porous materials

KW - semiconductors

UR - http://www.scopus.com/inward/record.url?scp=84855998867&partnerID=8YFLogxK

U2 - 10.1002/adma.201103557

DO - 10.1002/adma.201103557

M3 - Article

C2 - 22213088

AN - SCOPUS:84855998867

VL - 24

SP - 543

EP - 548

JO - Advanced materials

JF - Advanced materials

SN - 0935-9648

IS - 4

ER -