Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 053525 |
Fachzeitschrift | Physical Review A |
Jahrgang | 105 |
Ausgabenummer | 5 |
Publikationsstatus | Veröffentlicht - 27 Mai 2022 |
Abstract
Bound states of optical solitons represent ideal candidates to investigate fundamental nonlinear wave interaction principles and have been shown to exhibit intriguing analogies to phenomena in quantum mechanics. Usually, such soliton molecules are created by a suitable balance of phase-related attraction and repulsion between two copropagating solitons with overlapping tails. However, there exists also another type of compound state, where strong binding forces result directly from the Kerr nonlinearity between solitons at different center frequencies. The physical mechanisms as well as the properties of these objects are quite different from those of usual soliton molecules, but are hardly known. Here we characterize and investigate these compound states in greater detail. We demonstrate unique propagation dynamics by investigating the robustness of the compound states under perturbations, such as third-order dispersion and the Raman effect. The constituents are individually affected by the perturbations, but the impact on the compound state is not a mere superimposition. One observes complex dynamics resulting from a strong entanglement between the subpulses. For example, in the case of the Raman effect both subpulses are subject to a cancellation of the self-frequency shift, although only one subpulse is approaching a zero-dispersion frequency. We extend the concept of the molecule states to three and more constituents by adopting appropriate propagation constants. These multicolor soliton molecules open up further perspectives for exploring the complex physics of photonic molecules, but also show great potential for application resulting from their robustness and the possibility to control their properties.
ASJC Scopus Sachgebiete
- Physik und Astronomie (insg.)
- Atom- und Molekularphysik sowie Optik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Physical Review A, Jahrgang 105, Nr. 5, 053525, 27.05.2022.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Heteronuclear soliton molecules with two frequencies
AU - Willms, Stephanie
AU - Melchert, Oliver
AU - Bose, Surajit
AU - Yulin, Alexey
AU - Oreshnikov, Ivan
AU - Morgner, Uwe
AU - Babushkin, Ihar
AU - Demircan, Ayhan
N1 - Funding Information: The authors acknowledge financial support from Deutsche Forschungsgemeinschaft (Projects No. BA4156/4-2 and No. MO 850-20/1) under Germany's Excellence Strategy within the Clusters of Excellence PhoenixD (Photonics, Optics, and Engineering—Innovation Across Disciplines) (EXC 2122, Project No. 390833453) and QuantumFrontiers (EXC 2123, Project No. 390837967).
PY - 2022/5/27
Y1 - 2022/5/27
N2 - Bound states of optical solitons represent ideal candidates to investigate fundamental nonlinear wave interaction principles and have been shown to exhibit intriguing analogies to phenomena in quantum mechanics. Usually, such soliton molecules are created by a suitable balance of phase-related attraction and repulsion between two copropagating solitons with overlapping tails. However, there exists also another type of compound state, where strong binding forces result directly from the Kerr nonlinearity between solitons at different center frequencies. The physical mechanisms as well as the properties of these objects are quite different from those of usual soliton molecules, but are hardly known. Here we characterize and investigate these compound states in greater detail. We demonstrate unique propagation dynamics by investigating the robustness of the compound states under perturbations, such as third-order dispersion and the Raman effect. The constituents are individually affected by the perturbations, but the impact on the compound state is not a mere superimposition. One observes complex dynamics resulting from a strong entanglement between the subpulses. For example, in the case of the Raman effect both subpulses are subject to a cancellation of the self-frequency shift, although only one subpulse is approaching a zero-dispersion frequency. We extend the concept of the molecule states to three and more constituents by adopting appropriate propagation constants. These multicolor soliton molecules open up further perspectives for exploring the complex physics of photonic molecules, but also show great potential for application resulting from their robustness and the possibility to control their properties.
AB - Bound states of optical solitons represent ideal candidates to investigate fundamental nonlinear wave interaction principles and have been shown to exhibit intriguing analogies to phenomena in quantum mechanics. Usually, such soliton molecules are created by a suitable balance of phase-related attraction and repulsion between two copropagating solitons with overlapping tails. However, there exists also another type of compound state, where strong binding forces result directly from the Kerr nonlinearity between solitons at different center frequencies. The physical mechanisms as well as the properties of these objects are quite different from those of usual soliton molecules, but are hardly known. Here we characterize and investigate these compound states in greater detail. We demonstrate unique propagation dynamics by investigating the robustness of the compound states under perturbations, such as third-order dispersion and the Raman effect. The constituents are individually affected by the perturbations, but the impact on the compound state is not a mere superimposition. One observes complex dynamics resulting from a strong entanglement between the subpulses. For example, in the case of the Raman effect both subpulses are subject to a cancellation of the self-frequency shift, although only one subpulse is approaching a zero-dispersion frequency. We extend the concept of the molecule states to three and more constituents by adopting appropriate propagation constants. These multicolor soliton molecules open up further perspectives for exploring the complex physics of photonic molecules, but also show great potential for application resulting from their robustness and the possibility to control their properties.
UR - http://www.scopus.com/inward/record.url?scp=85131336809&partnerID=8YFLogxK
U2 - 10.1103/PhysRevA.105.053525
DO - 10.1103/PhysRevA.105.053525
M3 - Article
AN - SCOPUS:85131336809
VL - 105
JO - Physical Review A
JF - Physical Review A
SN - 2469-9926
IS - 5
M1 - 053525
ER -