Heat-type equations on manifolds with fibered boundaries I: Schauder estimates

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Bruno Caldeira
  • Giuseppe Gentile

Organisationseinheiten

Externe Organisationen

  • Universidade Federal de São Carlos (UFSCar)
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Aufsatznummer12
FachzeitschriftAnnals of Global Analysis and Geometry
Jahrgang66
Ausgabenummer3
Frühes Online-Datum26 Sept. 2024
PublikationsstatusVeröffentlicht - Okt. 2024

Abstract

In this paper, we prove parabolic Schauder estimates for the Laplace-Beltrami operator on a manifold M with fibered boundary and a Φ-metric gΦ. This setting generalizes the asymptotically conical (scattering) spaces and includes special cases of gravitational instantons. This paper, combined with part II, lay the crucial groundwork for forthcoming discussions on geometric flows in this setting; especially the Yamabe- and mean curvature flow.

ASJC Scopus Sachgebiete

Zitieren

Heat-type equations on manifolds with fibered boundaries I: Schauder estimates. / Caldeira, Bruno; Gentile, Giuseppe.
in: Annals of Global Analysis and Geometry, Jahrgang 66, Nr. 3, 12, 10.2024.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Caldeira B, Gentile G. Heat-type equations on manifolds with fibered boundaries I: Schauder estimates. Annals of Global Analysis and Geometry. 2024 Okt;66(3):12. Epub 2024 Sep 26. doi: 10.1007/s10455-024-09970-z
Download
@article{a0c1cda0612144099664dbfe5462de95,
title = "Heat-type equations on manifolds with fibered boundaries I: Schauder estimates",
abstract = "In this paper, we prove parabolic Schauder estimates for the Laplace-Beltrami operator on a manifold M with fibered boundary and a Φ-metric gΦ. This setting generalizes the asymptotically conical (scattering) spaces and includes special cases of gravitational instantons. This paper, combined with part II, lay the crucial groundwork for forthcoming discussions on geometric flows in this setting; especially the Yamabe- and mean curvature flow.",
keywords = "Bounded geometry, Heat kernel, Maximum principle, Schauder estimates, Φ-Manifolds",
author = "Bruno Caldeira and Giuseppe Gentile",
note = "Publisher Copyright: {\textcopyright} The Author(s), under exclusive licence to Springer Nature B.V. 2024.",
year = "2024",
month = oct,
doi = "10.1007/s10455-024-09970-z",
language = "English",
volume = "66",
journal = "Annals of Global Analysis and Geometry",
issn = "0232-704X",
publisher = "Springer Netherlands",
number = "3",

}

Download

TY - JOUR

T1 - Heat-type equations on manifolds with fibered boundaries I

T2 - Schauder estimates

AU - Caldeira, Bruno

AU - Gentile, Giuseppe

N1 - Publisher Copyright: © The Author(s), under exclusive licence to Springer Nature B.V. 2024.

PY - 2024/10

Y1 - 2024/10

N2 - In this paper, we prove parabolic Schauder estimates for the Laplace-Beltrami operator on a manifold M with fibered boundary and a Φ-metric gΦ. This setting generalizes the asymptotically conical (scattering) spaces and includes special cases of gravitational instantons. This paper, combined with part II, lay the crucial groundwork for forthcoming discussions on geometric flows in this setting; especially the Yamabe- and mean curvature flow.

AB - In this paper, we prove parabolic Schauder estimates for the Laplace-Beltrami operator on a manifold M with fibered boundary and a Φ-metric gΦ. This setting generalizes the asymptotically conical (scattering) spaces and includes special cases of gravitational instantons. This paper, combined with part II, lay the crucial groundwork for forthcoming discussions on geometric flows in this setting; especially the Yamabe- and mean curvature flow.

KW - Bounded geometry

KW - Heat kernel

KW - Maximum principle

KW - Schauder estimates

KW - Φ-Manifolds

UR - http://www.scopus.com/inward/record.url?scp=85204927306&partnerID=8YFLogxK

U2 - 10.1007/s10455-024-09970-z

DO - 10.1007/s10455-024-09970-z

M3 - Article

AN - SCOPUS:85204927306

VL - 66

JO - Annals of Global Analysis and Geometry

JF - Annals of Global Analysis and Geometry

SN - 0232-704X

IS - 3

M1 - 12

ER -