Heat flow, weighted Bergman spaces, and real analytic Lipschitz approximation

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Wolfram Bauer
  • Lewis A. Coburn

Organisationseinheiten

Externe Organisationen

  • University at Buffalo (UB)
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)225-246
Seitenumfang22
FachzeitschriftJournal fur die Reine und Angewandte Mathematik
Jahrgang2015
Ausgabenummer703
PublikationsstatusVeröffentlicht - 1 Juni 2015

Abstract

We show that, for f any uniformly continuous (UC) complex-valued function on real Euclidean n-space ℝn, the heat flow f˜(t) is Lipschitz for all t > 0 and f˜(t) converges uniformly to f as t → 0. Analogously, let Ω be any irreducible bounded symmetric (Cartan) domain in complex n-space ℂn and consider the Bergman metric β(·,·) on Ω. For f any β-uniformly continuous function Ω, we show that there is a Berezin-Harish-Chandra flow of real analytic functions Bλf which is β-Lipschitz for each λ ≥ p (p, the genus of Ω) and Bλf converges uniformly to f as λ → ∞. For a certain subspace of UC we obtain stronger approximation results and we study the asymptotic behaviour of the Lipschitz constants.

ASJC Scopus Sachgebiete

Zitieren

Heat flow, weighted Bergman spaces, and real analytic Lipschitz approximation. / Bauer, Wolfram; Coburn, Lewis A.
in: Journal fur die Reine und Angewandte Mathematik, Jahrgang 2015, Nr. 703, 01.06.2015, S. 225-246.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Bauer W, Coburn LA. Heat flow, weighted Bergman spaces, and real analytic Lipschitz approximation. Journal fur die Reine und Angewandte Mathematik. 2015 Jun 1;2015(703):225-246. doi: 10.1515/crelle-2015-0016
Bauer, Wolfram ; Coburn, Lewis A. / Heat flow, weighted Bergman spaces, and real analytic Lipschitz approximation. in: Journal fur die Reine und Angewandte Mathematik. 2015 ; Jahrgang 2015, Nr. 703. S. 225-246.
Download
@article{7d04932922bf4b2da68329c71f63c57a,
title = "Heat flow, weighted Bergman spaces, and real analytic Lipschitz approximation",
abstract = "We show that, for f any uniformly continuous (UC) complex-valued function on real Euclidean n-space ℝn, the heat flow f˜(t) is Lipschitz for all t > 0 and f˜(t) converges uniformly to f as t → 0. Analogously, let Ω be any irreducible bounded symmetric (Cartan) domain in complex n-space ℂn and consider the Bergman metric β(·,·) on Ω. For f any β-uniformly continuous function Ω, we show that there is a Berezin-Harish-Chandra flow of real analytic functions Bλf which is β-Lipschitz for each λ ≥ p (p, the genus of Ω) and Bλf converges uniformly to f as λ → ∞. For a certain subspace of UC we obtain stronger approximation results and we study the asymptotic behaviour of the Lipschitz constants.",
author = "Wolfram Bauer and Coburn, {Lewis A.}",
note = "Publisher Copyright: {\textcopyright} 2015 by De Gruyter. Copyright: Copyright 2015 Elsevier B.V., All rights reserved.",
year = "2015",
month = jun,
day = "1",
doi = "10.1515/crelle-2015-0016",
language = "English",
volume = "2015",
pages = "225--246",
journal = "Journal fur die Reine und Angewandte Mathematik",
issn = "0075-4102",
publisher = "Walter de Gruyter GmbH",
number = "703",

}

Download

TY - JOUR

T1 - Heat flow, weighted Bergman spaces, and real analytic Lipschitz approximation

AU - Bauer, Wolfram

AU - Coburn, Lewis A.

N1 - Publisher Copyright: © 2015 by De Gruyter. Copyright: Copyright 2015 Elsevier B.V., All rights reserved.

PY - 2015/6/1

Y1 - 2015/6/1

N2 - We show that, for f any uniformly continuous (UC) complex-valued function on real Euclidean n-space ℝn, the heat flow f˜(t) is Lipschitz for all t > 0 and f˜(t) converges uniformly to f as t → 0. Analogously, let Ω be any irreducible bounded symmetric (Cartan) domain in complex n-space ℂn and consider the Bergman metric β(·,·) on Ω. For f any β-uniformly continuous function Ω, we show that there is a Berezin-Harish-Chandra flow of real analytic functions Bλf which is β-Lipschitz for each λ ≥ p (p, the genus of Ω) and Bλf converges uniformly to f as λ → ∞. For a certain subspace of UC we obtain stronger approximation results and we study the asymptotic behaviour of the Lipschitz constants.

AB - We show that, for f any uniformly continuous (UC) complex-valued function on real Euclidean n-space ℝn, the heat flow f˜(t) is Lipschitz for all t > 0 and f˜(t) converges uniformly to f as t → 0. Analogously, let Ω be any irreducible bounded symmetric (Cartan) domain in complex n-space ℂn and consider the Bergman metric β(·,·) on Ω. For f any β-uniformly continuous function Ω, we show that there is a Berezin-Harish-Chandra flow of real analytic functions Bλf which is β-Lipschitz for each λ ≥ p (p, the genus of Ω) and Bλf converges uniformly to f as λ → ∞. For a certain subspace of UC we obtain stronger approximation results and we study the asymptotic behaviour of the Lipschitz constants.

UR - http://www.scopus.com/inward/record.url?scp=84930971310&partnerID=8YFLogxK

U2 - 10.1515/crelle-2015-0016

DO - 10.1515/crelle-2015-0016

M3 - Article

AN - SCOPUS:84930971310

VL - 2015

SP - 225

EP - 246

JO - Journal fur die Reine und Angewandte Mathematik

JF - Journal fur die Reine und Angewandte Mathematik

SN - 0075-4102

IS - 703

ER -