Heat flow, BMO, and the compactness of Toeplitz operators

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • W. Bauer
  • L. A. Coburn
  • J. Isralowitz

Externe Organisationen

  • Universität Greifswald
  • University at Buffalo (UB)
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)57-78
Seitenumfang22
FachzeitschriftJournal of functional analysis
Jahrgang259
Ausgabenummer1
PublikationsstatusVeröffentlicht - 9 Apr. 2010
Extern publiziertJa

Abstract

In this paper, it is shown that the Berezin-Toeplitz operator Tg is compact or in the Schatten class Sp of the Segal-Bargmann space for 1<p<∞ whenever g̃(s)∈C0(C{double-struck}n) (vanishes at infinity) or g̃(s)∈Lp(Cn,dv), respectively, for some s with 0<s<14, where g̃(s) is the heat transform of g on C{double-struck}n. Moreover, we show that compactness of Tg implies that g̃(s) is in C0(Cn) for all s>14 and use this to show that, for g∈BMO1(C{double-struck}n), we have g̃(s) is in C0(C{double-struck}n) for some s>0 only if g̃(s) is in C0(Cn) for all s>0. This " backwards heat flow" result seems to be unknown for g∈BMO1 and even g∈L. Finally, we show that our compactness and vanishing " backwards heat flow" results hold in the context of the weighted Bergman space La2(B{double-struck}n,dvα), where the "heat flow" g̃(s) is replaced by the Berezin transform Bα(g) on La2(B{double-struck}n,dvα) for α>-1.

ASJC Scopus Sachgebiete

Zitieren

Heat flow, BMO, and the compactness of Toeplitz operators. / Bauer, W.; Coburn, L. A.; Isralowitz, J.
in: Journal of functional analysis, Jahrgang 259, Nr. 1, 09.04.2010, S. 57-78.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Bauer W, Coburn LA, Isralowitz J. Heat flow, BMO, and the compactness of Toeplitz operators. Journal of functional analysis. 2010 Apr 9;259(1):57-78. doi: 10.1016/j.jfa.2010.03.016
Bauer, W. ; Coburn, L. A. ; Isralowitz, J. / Heat flow, BMO, and the compactness of Toeplitz operators. in: Journal of functional analysis. 2010 ; Jahrgang 259, Nr. 1. S. 57-78.
Download
@article{d677afc62c1c4d7b977de722d97763bc,
title = "Heat flow, BMO, and the compactness of Toeplitz operators",
abstract = "In this paper, it is shown that the Berezin-Toeplitz operator Tg is compact or in the Schatten class Sp of the Segal-Bargmann space for 1(s)∈C0(C{double-struck}n) (vanishes at infinity) or {\~g}(s)∈Lp(Cn,dv), respectively, for some s with 0n. Moreover, we show that compactness of Tg implies that {\~g}(s) is in C0(Cn) for all s>14 and use this to show that, for g∈BMO1(C{double-struck}n), we have {\~g}(s) is in C0(C{double-struck}n) for some s>0 only if {\~g}(s) is in C0(Cn) for all s>0. This {"} backwards heat flow{"} result seems to be unknown for g∈BMO1 and even g∈L∞. Finally, we show that our compactness and vanishing {"} backwards heat flow{"} results hold in the context of the weighted Bergman space La2(B{double-struck}n,dvα), where the {"}heat flow{"} {\~g}(s) is replaced by the Berezin transform Bα(g) on La2(B{double-struck}n,dvα) for α>-1.",
keywords = "Berezin transform, Berezin-Toeplitz operator, Compact operators, Segal-Bargmann space",
author = "W. Bauer and Coburn, {L. A.} and J. Isralowitz",
note = "Funding Information: * Corresponding author. E-mail addresses: wolfram.bauer@uni-greifswald.de (W. Bauer), lcoburn@buffalo.edu (L.A. Coburn), jbi2@buffalo.edu (J. Isralowitz). 1 Supported by an Emmy-Noether grant of DFG (Deutsche Forschungsgemeinschaft). Copyright: Copyright 2010 Elsevier B.V., All rights reserved.",
year = "2010",
month = apr,
day = "9",
doi = "10.1016/j.jfa.2010.03.016",
language = "English",
volume = "259",
pages = "57--78",
journal = "Journal of functional analysis",
issn = "0022-1236",
publisher = "Academic Press Inc.",
number = "1",

}

Download

TY - JOUR

T1 - Heat flow, BMO, and the compactness of Toeplitz operators

AU - Bauer, W.

AU - Coburn, L. A.

AU - Isralowitz, J.

N1 - Funding Information: * Corresponding author. E-mail addresses: wolfram.bauer@uni-greifswald.de (W. Bauer), lcoburn@buffalo.edu (L.A. Coburn), jbi2@buffalo.edu (J. Isralowitz). 1 Supported by an Emmy-Noether grant of DFG (Deutsche Forschungsgemeinschaft). Copyright: Copyright 2010 Elsevier B.V., All rights reserved.

PY - 2010/4/9

Y1 - 2010/4/9

N2 - In this paper, it is shown that the Berezin-Toeplitz operator Tg is compact or in the Schatten class Sp of the Segal-Bargmann space for 1(s)∈C0(C{double-struck}n) (vanishes at infinity) or g̃(s)∈Lp(Cn,dv), respectively, for some s with 0n. Moreover, we show that compactness of Tg implies that g̃(s) is in C0(Cn) for all s>14 and use this to show that, for g∈BMO1(C{double-struck}n), we have g̃(s) is in C0(C{double-struck}n) for some s>0 only if g̃(s) is in C0(Cn) for all s>0. This " backwards heat flow" result seems to be unknown for g∈BMO1 and even g∈L∞. Finally, we show that our compactness and vanishing " backwards heat flow" results hold in the context of the weighted Bergman space La2(B{double-struck}n,dvα), where the "heat flow" g̃(s) is replaced by the Berezin transform Bα(g) on La2(B{double-struck}n,dvα) for α>-1.

AB - In this paper, it is shown that the Berezin-Toeplitz operator Tg is compact or in the Schatten class Sp of the Segal-Bargmann space for 1(s)∈C0(C{double-struck}n) (vanishes at infinity) or g̃(s)∈Lp(Cn,dv), respectively, for some s with 0n. Moreover, we show that compactness of Tg implies that g̃(s) is in C0(Cn) for all s>14 and use this to show that, for g∈BMO1(C{double-struck}n), we have g̃(s) is in C0(C{double-struck}n) for some s>0 only if g̃(s) is in C0(Cn) for all s>0. This " backwards heat flow" result seems to be unknown for g∈BMO1 and even g∈L∞. Finally, we show that our compactness and vanishing " backwards heat flow" results hold in the context of the weighted Bergman space La2(B{double-struck}n,dvα), where the "heat flow" g̃(s) is replaced by the Berezin transform Bα(g) on La2(B{double-struck}n,dvα) for α>-1.

KW - Berezin transform

KW - Berezin-Toeplitz operator

KW - Compact operators

KW - Segal-Bargmann space

UR - http://www.scopus.com/inward/record.url?scp=77951939234&partnerID=8YFLogxK

U2 - 10.1016/j.jfa.2010.03.016

DO - 10.1016/j.jfa.2010.03.016

M3 - Article

AN - SCOPUS:77951939234

VL - 259

SP - 57

EP - 78

JO - Journal of functional analysis

JF - Journal of functional analysis

SN - 0022-1236

IS - 1

ER -