HARE: An Engine for Enhancing Answer Completeness of SPARQL Queries via Crowdsourcing

Publikation: Beitrag in Buch/Bericht/Sammelwerk/KonferenzbandAufsatz in KonferenzbandForschungPeer-Review

Autoren

  • Maribel Acosta
  • Elena Simperl
  • Fabian Flöck
  • Maria Esther Vidal

Organisationseinheiten

Externe Organisationen

  • Karlsruher Institut für Technologie (KIT)
  • University of Southampton
  • GESIS - Leibniz-Institut für Sozialwissenschaften
  • Universidad Simon Bolivar
  • Technische Informationsbibliothek (TIB) Leibniz-Informationszentrum Technik und Naturwissenschaften und Universitätsbibliothek
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Titel des SammelwerksThe Web Conference 2018
UntertitelCompanion of the World Wide Web Conference, WWW 2018
Seiten501-505
Seitenumfang5
ISBN (elektronisch)9781450356404
PublikationsstatusVeröffentlicht - Apr. 2018
Veranstaltung27th International World Wide Web, WWW 2018 - Lyon, Frankreich
Dauer: 23 Apr. 201827 Apr. 2018

Publikationsreihe

NameACM Digital Library

Abstract

We propose HARE, a SPARQL query engine that encompasses human-machine query processing to augment the completeness of query answers. We empirically assessed the effectiveness of HARE on 50 SPARQL queries over DBpedia. Experimental results clearly show that our solution accurately enhances answer completeness.

ASJC Scopus Sachgebiete

Zitieren

HARE: An Engine for Enhancing Answer Completeness of SPARQL Queries via Crowdsourcing. / Acosta, Maribel; Simperl, Elena; Flöck, Fabian et al.
The Web Conference 2018: Companion of the World Wide Web Conference, WWW 2018. 2018. S. 501-505 (ACM Digital Library).

Publikation: Beitrag in Buch/Bericht/Sammelwerk/KonferenzbandAufsatz in KonferenzbandForschungPeer-Review

Acosta, M, Simperl, E, Flöck, F & Vidal, ME 2018, HARE: An Engine for Enhancing Answer Completeness of SPARQL Queries via Crowdsourcing. in The Web Conference 2018: Companion of the World Wide Web Conference, WWW 2018. ACM Digital Library, S. 501-505, 27th International World Wide Web, WWW 2018, Lyon, Frankreich, 23 Apr. 2018. https://doi.org/10.2139/ssrn.3199306, https://doi.org/10.1145/3184558.3186241
Acosta, M., Simperl, E., Flöck, F., & Vidal, M. E. (2018). HARE: An Engine for Enhancing Answer Completeness of SPARQL Queries via Crowdsourcing. In The Web Conference 2018: Companion of the World Wide Web Conference, WWW 2018 (S. 501-505). (ACM Digital Library). https://doi.org/10.2139/ssrn.3199306, https://doi.org/10.1145/3184558.3186241
Acosta M, Simperl E, Flöck F, Vidal ME. HARE: An Engine for Enhancing Answer Completeness of SPARQL Queries via Crowdsourcing. in The Web Conference 2018: Companion of the World Wide Web Conference, WWW 2018. 2018. S. 501-505. (ACM Digital Library). Epub 2018 Apr 23. doi: 10.2139/ssrn.3199306, 10.1145/3184558.3186241
Acosta, Maribel ; Simperl, Elena ; Flöck, Fabian et al. / HARE: An Engine for Enhancing Answer Completeness of SPARQL Queries via Crowdsourcing. The Web Conference 2018: Companion of the World Wide Web Conference, WWW 2018. 2018. S. 501-505 (ACM Digital Library).
Download
@inproceedings{a46dc85cf4ca4e79a309716969540b0e,
title = "HARE: An Engine for Enhancing Answer Completeness of SPARQL Queries via Crowdsourcing",
abstract = "We propose HARE, a SPARQL query engine that encompasses human-machine query processing to augment the completeness of query answers. We empirically assessed the effectiveness of HARE on 50 SPARQL queries over DBpedia. Experimental results clearly show that our solution accurately enhances answer completeness.",
keywords = "completeness, crowdsourcing, query execution, RDF, SPARQL",
author = "Maribel Acosta and Elena Simperl and Fabian Fl{\"o}ck and Vidal, {Maria Esther}",
note = "Publisher Copyright: {\textcopyright} 2018 IW3C2 (International World Wide Web Conference Committee), published under Creative Commons CC BY 4.0 License.; 27th International World Wide Web, WWW 2018 ; Conference date: 23-04-2018 Through 27-04-2018",
year = "2018",
month = apr,
doi = "10.2139/ssrn.3199306",
language = "English",
series = "ACM Digital Library",
pages = "501--505",
booktitle = "The Web Conference 2018",

}

Download

TY - GEN

T1 - HARE: An Engine for Enhancing Answer Completeness of SPARQL Queries via Crowdsourcing

AU - Acosta, Maribel

AU - Simperl, Elena

AU - Flöck, Fabian

AU - Vidal, Maria Esther

N1 - Publisher Copyright: © 2018 IW3C2 (International World Wide Web Conference Committee), published under Creative Commons CC BY 4.0 License.

PY - 2018/4

Y1 - 2018/4

N2 - We propose HARE, a SPARQL query engine that encompasses human-machine query processing to augment the completeness of query answers. We empirically assessed the effectiveness of HARE on 50 SPARQL queries over DBpedia. Experimental results clearly show that our solution accurately enhances answer completeness.

AB - We propose HARE, a SPARQL query engine that encompasses human-machine query processing to augment the completeness of query answers. We empirically assessed the effectiveness of HARE on 50 SPARQL queries over DBpedia. Experimental results clearly show that our solution accurately enhances answer completeness.

KW - completeness

KW - crowdsourcing

KW - query execution

KW - RDF

KW - SPARQL

UR - http://www.scopus.com/inward/record.url?scp=85060936549&partnerID=8YFLogxK

U2 - 10.2139/ssrn.3199306

DO - 10.2139/ssrn.3199306

M3 - Conference contribution

AN - SCOPUS:85060936549

T3 - ACM Digital Library

SP - 501

EP - 505

BT - The Web Conference 2018

T2 - 27th International World Wide Web, WWW 2018

Y2 - 23 April 2018 through 27 April 2018

ER -