Details
Originalsprache | Englisch |
---|---|
Titel des Sammelwerks | 2019 International Radar Conference (RADAR) |
Erscheinungsort | Piscataway |
Herausgeber (Verlag) | Institute of Electrical and Electronics Engineers Inc. |
Seitenumfang | 5 |
ISBN (elektronisch) | 9781728126609 |
ISBN (Print) | 9781728137858 |
Publikationsstatus | Veröffentlicht - 2019 |
Veranstaltung | 2019 International Radar Conference, RADAR 2019 - Toulon, Frankreich Dauer: 23 Sept. 2019 → 27 Sept. 2019 |
Publikationsreihe
Name | Proceedings of the IEEE Radar Conference |
---|---|
ISSN (Print) | 1097-5764 |
ISSN (elektronisch) | 2640-7736 |
Abstract
Autofocus techniques for synthetic aperture radar (SAR) enable high image quality in case of suboptimal flight trajectories. However, the computational effort for image formation is increased significantly. In case of already resource demanding time-domain based backprojection, highly iterative methods are therefore not feasible in runtime-critical applications. An efficiently parallelizable and scalable minimum-search based optimization algorithm is presented, tailored to the needs of SAR autofocus on field programmable gate array (FPGA) hardware. It reduces computation time by more than an order of magnitude compared to sequential minimization.
ASJC Scopus Sachgebiete
- Informatik (insg.)
- Artificial intelligence
- Informatik (insg.)
- Computernetzwerke und -kommunikation
- Informatik (insg.)
- Signalverarbeitung
- Physik und Astronomie (insg.)
- Instrumentierung
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
2019 International Radar Conference (RADAR). Piscataway: Institute of Electrical and Electronics Engineers Inc., 2019. (Proceedings of the IEEE Radar Conference).
Publikation: Beitrag in Buch/Bericht/Sammelwerk/Konferenzband › Aufsatz in Konferenzband › Forschung › Peer-Review
}
TY - GEN
T1 - Hardware-optimized minimum-search for SAR backprojection autofocus on FPGAs
AU - Fahnemann, Christian
AU - Fallnich, Daniel
AU - Sommer, Aron
AU - Cholewa, Fabian
AU - Blume, Holger
N1 - Funding Information: The authors acknowledge the support by the WTD-81.
PY - 2019
Y1 - 2019
N2 - Autofocus techniques for synthetic aperture radar (SAR) enable high image quality in case of suboptimal flight trajectories. However, the computational effort for image formation is increased significantly. In case of already resource demanding time-domain based backprojection, highly iterative methods are therefore not feasible in runtime-critical applications. An efficiently parallelizable and scalable minimum-search based optimization algorithm is presented, tailored to the needs of SAR autofocus on field programmable gate array (FPGA) hardware. It reduces computation time by more than an order of magnitude compared to sequential minimization.
AB - Autofocus techniques for synthetic aperture radar (SAR) enable high image quality in case of suboptimal flight trajectories. However, the computational effort for image formation is increased significantly. In case of already resource demanding time-domain based backprojection, highly iterative methods are therefore not feasible in runtime-critical applications. An efficiently parallelizable and scalable minimum-search based optimization algorithm is presented, tailored to the needs of SAR autofocus on field programmable gate array (FPGA) hardware. It reduces computation time by more than an order of magnitude compared to sequential minimization.
KW - autofocus
KW - backprojection
KW - FPGA
KW - SAR
UR - http://www.scopus.com/inward/record.url?scp=85084959684&partnerID=8YFLogxK
U2 - 10.1109/RADAR41533.2019.171279
DO - 10.1109/RADAR41533.2019.171279
M3 - Conference contribution
AN - SCOPUS:85084959684
SN - 9781728137858
T3 - Proceedings of the IEEE Radar Conference
BT - 2019 International Radar Conference (RADAR)
PB - Institute of Electrical and Electronics Engineers Inc.
CY - Piscataway
T2 - 2019 International Radar Conference, RADAR 2019
Y2 - 23 September 2019 through 27 September 2019
ER -