GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs

Publikation: Beitrag in FachzeitschriftArtikelForschung

Autoren

  • The LIGO Scientific Collaboration
  • Virgo Collaboration
  • V. B. Adya
  • C. Affeldt
  • S. L. Danilishin
  • K. Danzmann
  • M. Heurs
  • H. Lück
  • D. Steinmeyer
  • H. Vahlbruch
  • L.-w. Wei
  • D. M. Wilken
  • B. Willke
  • H. Wittel
  • Sukanta Bose
  • D. D. Brown
  • Y. B. Chen
  • Manuela Hanke
  • J. Hennig
  • Sanjeev Kumar
  • R. N. Lang
  • H. K. Lee
  • H. M. Lee
  • H. W. Lee
  • J. Lee
  • X. Li
  • J. R. Sanders
  • Patricia Schmidt
  • L. Sun
  • L. V. White
  • D. S. Wu
  • L. Zhang
  • X. J. Zhu
  • Minchuan Zhou
  • Gerald Bergmann
  • Aparna Bisht
  • Nina Bode
  • P. Booker
  • Marc Brinkmann
  • M. Cabero
  • O. de Varona
  • S. Hochheim
  • T. Dent
  • S. Doravari
  • J. Junker
  • Stefan Kaufer
  • R. Kirchhoff
  • Patrick Koch
  • Kai S. Karvinen
  • S. Khan
  • N. Koper
  • S. M. Köhlenbeck
  • Volker Kringel
  • G. Kuehn
  • S. Leavey
  • J. Lehmann
  • James Lough
  • Moritz Mehmet
  • Arunava Mukherjee
  • Nikhil Mukund
  • M. Nery
  • F. Ohme
  • P. Oppermann
  • Emil Schreiber
  • B. W. Schulte
  • A. Rüdiger
  • M. Phelps
  • M. A. Papa
  • O. Puncken
  • Y. Setyawati
  • M. Steinke
  • M. Standke
  • Fabian Thies
  • Michael Weinert
  • F. Wellmann
  • Peter Weßels
  • Maximilian H. Wimmer
  • W. Winkler
  • J. Woehler
  • Peter Aufmuth

Externe Organisationen

  • Washington State University Pullman
  • Inter-University Centre for Astronomy and Astrophysics India
  • University of Adelaide
  • Tata Institute of Fundamental Research (TIFR HYD)
  • LIGO Laboratory
  • Inje University
  • California Institute of Technology (Caltech)
  • Radboud Universität Nijmegen (RU)
  • University of Melbourne
  • Syracuse University
  • Monash University
  • Northwestern University
  • Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Aufsatznummer031040
Seitenumfang49
FachzeitschriftPhysical Review X
Jahrgang9
Ausgabenummer3
PublikationsstatusVeröffentlicht - 4 Sept. 2019

Abstract

We present the results from three gravitational-wave searches for coalescing compact binaries with component masses above 1 Ma™ during the first and second observing runs of the advanced gravitational-wave detector network. During the first observing run (O1), from September 12, 2015 to January 19, 2016, gravitational waves from three binary black hole mergers were detected. The second observing run (O2), which ran from November 30, 2016 to August 25, 2017, saw the first detection of gravitational waves from a binary neutron star inspiral, in addition to the observation of gravitational waves from a total of seven binary black hole mergers, four of which we report here for the first time: GW170729, GW170809, GW170818, and GW170823. For all significant gravitational-wave events, we provide estimates of the source properties. The detected binary black holes have total masses between 18.6-0.7+3.2 Mâ™ and 84.4-11.1+15.8 Mâ™ and range in distance between 320-110+120 and 2840-1360+1400 Mpc. No neutron star-black hole mergers were detected. In addition to highly significant gravitational-wave events, we also provide a list of marginal event candidates with an estimated false-alarm rate less than 1 per 30 days. From these results over the first two observing runs, which include approximately one gravitational-wave detection per 15 days of data searched, we infer merger rates at the 90% confidence intervals of 110-3840 Gpc-3 y-1 for binary neutron stars and 9.7-101 Gpc-3 y-1 for binary black holes assuming fixed population distributions and determine a neutron star-black hole merger rate 90% upper limit of 610 Gpc-3 y-1.

ASJC Scopus Sachgebiete

Zitieren

GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. / The LIGO Scientific Collaboration; Virgo Collaboration; Adya, V. B. et al.
in: Physical Review X, Jahrgang 9, Nr. 3, 031040, 04.09.2019.

Publikation: Beitrag in FachzeitschriftArtikelForschung

The LIGO Scientific Collaboration, Virgo Collaboration, Adya, VB, Affeldt, C, Danilishin, SL, Danzmann, K, Heurs, M, Lück, H, Steinmeyer, D, Vahlbruch, H, Wei, L, Wilken, DM, Willke, B, Wittel, H, Bose, S, Brown, DD, Chen, YB, Hanke, M, Hennig, J, Kumar, S, Lang, RN, Lee, HK, Lee, HM, Lee, HW, Lee, J, Li, X, Sanders, JR, Schmidt, P, Sun, L, White, LV, Wu, DS, Zhang, L, Zhu, XJ, Zhou, M, Bergmann, G, Bisht, A, Bode, N, Booker, P, Brinkmann, M, Cabero, M, de Varona, O, Hochheim, S, Dent, T, Doravari, S, Junker, J, Kaufer, S, Kirchhoff, R, Koch, P, Karvinen, KS, Khan, S, Koper, N, Köhlenbeck, SM, Kringel, V, Kuehn, G, Leavey, S, Lehmann, J, Lough, J, Mehmet, M, Mukherjee, A, Mukund, N, Nery, M, Ohme, F, Oppermann, P, Schreiber, E, Schulte, BW, Rüdiger, A, Phelps, M, Papa, MA, Puncken, O, Setyawati, Y, Steinke, M, Standke, M, Thies, F, Weinert, M, Wellmann, F, Weßels, P, Wimmer, MH, Winkler, W, Woehler, J & Aufmuth, P 2019, 'GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs', Physical Review X, Jg. 9, Nr. 3, 031040. https://doi.org/10.1103/PhysRevX.9.031040
The LIGO Scientific Collaboration, Virgo Collaboration, Adya, V. B., Affeldt, C., Danilishin, S. L., Danzmann, K., Heurs, M., Lück, H., Steinmeyer, D., Vahlbruch, H., Wei, L., Wilken, D. M., Willke, B., Wittel, H., Bose, S., Brown, D. D., Chen, Y. B., Hanke, M., Hennig, J., ... Aufmuth, P. (2019). GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. Physical Review X, 9(3), Artikel 031040. https://doi.org/10.1103/PhysRevX.9.031040
The LIGO Scientific Collaboration, Virgo Collaboration, Adya VB, Affeldt C, Danilishin SL, Danzmann K et al. GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. Physical Review X. 2019 Sep 4;9(3):031040. doi: 10.1103/PhysRevX.9.031040
The LIGO Scientific Collaboration ; Virgo Collaboration ; Adya, V. B. et al. / GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs. in: Physical Review X. 2019 ; Jahrgang 9, Nr. 3.
Download
@article{de7c7caa36414c2d894f6fcaa69a86ae,
title = "GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs",
abstract = "We present the results from three gravitational-wave searches for coalescing compact binaries with component masses above 1 Ma{\texttrademark} during the first and second observing runs of the advanced gravitational-wave detector network. During the first observing run (O1), from September 12, 2015 to January 19, 2016, gravitational waves from three binary black hole mergers were detected. The second observing run (O2), which ran from November 30, 2016 to August 25, 2017, saw the first detection of gravitational waves from a binary neutron star inspiral, in addition to the observation of gravitational waves from a total of seven binary black hole mergers, four of which we report here for the first time: GW170729, GW170809, GW170818, and GW170823. For all significant gravitational-wave events, we provide estimates of the source properties. The detected binary black holes have total masses between 18.6-0.7+3.2 M{\^a}{\texttrademark} and 84.4-11.1+15.8 M{\^a}{\texttrademark} and range in distance between 320-110+120 and 2840-1360+1400 Mpc. No neutron star-black hole mergers were detected. In addition to highly significant gravitational-wave events, we also provide a list of marginal event candidates with an estimated false-alarm rate less than 1 per 30 days. From these results over the first two observing runs, which include approximately one gravitational-wave detection per 15 days of data searched, we infer merger rates at the 90% confidence intervals of 110-3840 Gpc-3 y-1 for binary neutron stars and 9.7-101 Gpc-3 y-1 for binary black holes assuming fixed population distributions and determine a neutron star-black hole merger rate 90% upper limit of 610 Gpc-3 y-1.",
author = "{The LIGO Scientific Collaboration} and {The Virgo Collaboration} and B. P. Abbott and R. Abbott and T. D. Abbott and S. Abraham and F. Acernese and K. Ackley and C. Adams and R. X. Adhikari and V. B. Adya and C. Affeldt and M. Agathos and K. Agatsuma and N. Aggarwal and O. D. Aguiar and L. Aiello and A. Ain and P. Ajith and G. Allen and A. Allocca and M. A. Aloy and P. A. Altin and A. Amato and A. Ananyeva and S. B. Anderson and W. G. Anderson and S. V. Angelova and S. Antier and S. Appert and K. Arai and M. C. Araya and J. S. Areeda and M. Ar{\`e}ne and N. Arnaud and K. G. Arun and S. Ascenzi and G. Ashton and S. M. Aston and P. Astone and F. Aubin and S. L. Danilishin and K. Danzmann and M. Heurs and A. Hreibi and H. L{\"u}ck and D. Steinmeyer and H. Vahlbruch and L.-w. Wei and D. M. Wilken and B. Willke and H. Wittel and Sukanta Bose and Brown, {D. D.} and Chen, {Y. B.} and Manuela Hanke and J. Hennig and Sanjeev Kumar and Lang, {R. N.} and Lee, {H. K.} and Lee, {H. M.} and Lee, {H. W.} and J. Lee and X. Li and Sanders, {J. R.} and Patricia Schmidt and L. Sun and White, {L. V.} and Wu, {D. S.} and L. Zhang and Zhu, {X. J.} and Minchuan Zhou and Gerald Bergmann and Aparna Bisht and Nina Bode and P. Booker and Marc Brinkmann and M. Cabero and {de Varona}, O. and S. Hochheim and T. Dent and S. Doravari and J. Junker and Stefan Kaufer and R. Kirchhoff and Patrick Koch and Karvinen, {Kai S.} and S. Khan and N. Koper and K{\"o}hlenbeck, {S. M.} and Volker Kringel and G. Kuehn and S. Leavey and J. Lehmann and James Lough and Moritz Mehmet and Arunava Mukherjee and Nikhil Mukund and M. Nery and F. Ohme and P. Oppermann and Emil Schreiber and Schulte, {B. W.} and A. R{\"u}diger and M. Phelps and Papa, {M. A.} and O. Puncken and Y. Setyawati and M. Steinke and M. Standke and Fabian Thies and Michael Weinert and F. Wellmann and Peter We{\ss}els and Wimmer, {Maximilian H.} and W. Winkler and J. Woehler and Peter Aufmuth",
note = "Funding information: The authors gratefully acknowledge the support of the United States National Science Foundation (NSF) for the construction and operation of the LIGO Laboratory and Advanced LIGO as well as the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS), and the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India, the Department of Science and Technology, India, the Science and Engineering Research Board (SERB), India, the Ministry of Human Resource Development, India, the Spanish Agencia Estatal de Investigaci{\'o}n, the Vicepresid{\`e}ncia i Conselleria d{\textquoteright}Innovaci{\'o}, Recerca i Turisme and the Conselleria d{\textquoteright}Educaci{\'o} i Universitat del Govern de les Illes Balears, the Conselleria d{\textquoteright}Educaci{\'o}, Investigaci{\'o}, Cultura i Esport de la Generalitat Valenciana, the National Science Centre of Poland, the Swiss National Science Foundation (SNSF), the Russian Foundation for Basic Research, the Russian Science Foundation, the European Commission, the European Regional Development Funds (ERDF), the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the Hungarian Scientific Research Fund (OTKA), the Lyon Institute of Origins (LIO), the Paris {\^I}le-de-France Region, the National Research, Development and Innovation Office Hungary (NKFIH), the National Research Foundation of Korea, Industry Canada and the Province of Ontario through the Ministry of Economic Development and Innovation, the Natural Science and Engineering Research Council Canada, the Canadian Institute for Advanced Research, the Brazilian Ministry of Science, Technology, Innovations, and Communications, the International Center for Theoretical Physics South American Institute for Fundamental Research (ICTP-SAIFR), the Research Grants Council of Hong Kong, the National Natural Science Foundation of China (NSFC), the Leverhulme Trust, the Research Corporation, the Ministry of Science and Technology (MOST), Taiwan, and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, MPS, INFN, CNRS, and the State of Niedersachsen/Germany for provision of computational resources.",
year = "2019",
month = sep,
day = "4",
doi = "10.1103/PhysRevX.9.031040",
language = "English",
volume = "9",
journal = "Physical Review X",
issn = "2160-3308",
publisher = "American Physical Society",
number = "3",

}

Download

TY - JOUR

T1 - GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs

AU - The LIGO Scientific Collaboration

AU - The Virgo Collaboration

AU - Abbott, B. P.

AU - Abbott, R.

AU - Abbott, T. D.

AU - Abraham, S.

AU - Acernese, F.

AU - Ackley, K.

AU - Adams, C.

AU - Adhikari, R. X.

AU - Adya, V. B.

AU - Affeldt, C.

AU - Agathos, M.

AU - Agatsuma, K.

AU - Aggarwal, N.

AU - Aguiar, O. D.

AU - Aiello, L.

AU - Ain, A.

AU - Ajith, P.

AU - Allen, G.

AU - Allocca, A.

AU - Aloy, M. A.

AU - Altin, P. A.

AU - Amato, A.

AU - Ananyeva, A.

AU - Anderson, S. B.

AU - Anderson, W. G.

AU - Angelova, S. V.

AU - Antier, S.

AU - Appert, S.

AU - Arai, K.

AU - Araya, M. C.

AU - Areeda, J. S.

AU - Arène, M.

AU - Arnaud, N.

AU - Arun, K. G.

AU - Ascenzi, S.

AU - Ashton, G.

AU - Aston, S. M.

AU - Astone, P.

AU - Aubin, F.

AU - Danilishin, S. L.

AU - Danzmann, K.

AU - Heurs, M.

AU - Hreibi, A.

AU - Lück, H.

AU - Steinmeyer, D.

AU - Vahlbruch, H.

AU - Wei, L.-w.

AU - Wilken, D. M.

AU - Willke, B.

AU - Wittel, H.

AU - Bose, Sukanta

AU - Brown, D. D.

AU - Chen, Y. B.

AU - Hanke, Manuela

AU - Hennig, J.

AU - Kumar, Sanjeev

AU - Lang, R. N.

AU - Lee, H. K.

AU - Lee, H. M.

AU - Lee, H. W.

AU - Lee, J.

AU - Li, X.

AU - Sanders, J. R.

AU - Schmidt, Patricia

AU - Sun, L.

AU - White, L. V.

AU - Wu, D. S.

AU - Zhang, L.

AU - Zhu, X. J.

AU - Zhou, Minchuan

AU - Bergmann, Gerald

AU - Bisht, Aparna

AU - Bode, Nina

AU - Booker, P.

AU - Brinkmann, Marc

AU - Cabero, M.

AU - de Varona, O.

AU - Hochheim, S.

AU - Dent, T.

AU - Doravari, S.

AU - Junker, J.

AU - Kaufer, Stefan

AU - Kirchhoff, R.

AU - Koch, Patrick

AU - Karvinen, Kai S.

AU - Khan, S.

AU - Koper, N.

AU - Köhlenbeck, S. M.

AU - Kringel, Volker

AU - Kuehn, G.

AU - Leavey, S.

AU - Lehmann, J.

AU - Lough, James

AU - Mehmet, Moritz

AU - Mukherjee, Arunava

AU - Mukund, Nikhil

AU - Nery, M.

AU - Ohme, F.

AU - Oppermann, P.

AU - Schreiber, Emil

AU - Schulte, B. W.

AU - Rüdiger, A.

AU - Phelps, M.

AU - Papa, M. A.

AU - Puncken, O.

AU - Setyawati, Y.

AU - Steinke, M.

AU - Standke, M.

AU - Thies, Fabian

AU - Weinert, Michael

AU - Wellmann, F.

AU - Weßels, Peter

AU - Wimmer, Maximilian H.

AU - Winkler, W.

AU - Woehler, J.

AU - Aufmuth, Peter

N1 - Funding information: The authors gratefully acknowledge the support of the United States National Science Foundation (NSF) for the construction and operation of the LIGO Laboratory and Advanced LIGO as well as the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS), and the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India, the Department of Science and Technology, India, the Science and Engineering Research Board (SERB), India, the Ministry of Human Resource Development, India, the Spanish Agencia Estatal de Investigación, the Vicepresidència i Conselleria d’Innovació, Recerca i Turisme and the Conselleria d’Educació i Universitat del Govern de les Illes Balears, the Conselleria d’Educació, Investigació, Cultura i Esport de la Generalitat Valenciana, the National Science Centre of Poland, the Swiss National Science Foundation (SNSF), the Russian Foundation for Basic Research, the Russian Science Foundation, the European Commission, the European Regional Development Funds (ERDF), the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the Hungarian Scientific Research Fund (OTKA), the Lyon Institute of Origins (LIO), the Paris Île-de-France Region, the National Research, Development and Innovation Office Hungary (NKFIH), the National Research Foundation of Korea, Industry Canada and the Province of Ontario through the Ministry of Economic Development and Innovation, the Natural Science and Engineering Research Council Canada, the Canadian Institute for Advanced Research, the Brazilian Ministry of Science, Technology, Innovations, and Communications, the International Center for Theoretical Physics South American Institute for Fundamental Research (ICTP-SAIFR), the Research Grants Council of Hong Kong, the National Natural Science Foundation of China (NSFC), the Leverhulme Trust, the Research Corporation, the Ministry of Science and Technology (MOST), Taiwan, and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, MPS, INFN, CNRS, and the State of Niedersachsen/Germany for provision of computational resources.

PY - 2019/9/4

Y1 - 2019/9/4

N2 - We present the results from three gravitational-wave searches for coalescing compact binaries with component masses above 1 Ma™ during the first and second observing runs of the advanced gravitational-wave detector network. During the first observing run (O1), from September 12, 2015 to January 19, 2016, gravitational waves from three binary black hole mergers were detected. The second observing run (O2), which ran from November 30, 2016 to August 25, 2017, saw the first detection of gravitational waves from a binary neutron star inspiral, in addition to the observation of gravitational waves from a total of seven binary black hole mergers, four of which we report here for the first time: GW170729, GW170809, GW170818, and GW170823. For all significant gravitational-wave events, we provide estimates of the source properties. The detected binary black holes have total masses between 18.6-0.7+3.2 Mâ™ and 84.4-11.1+15.8 Mâ™ and range in distance between 320-110+120 and 2840-1360+1400 Mpc. No neutron star-black hole mergers were detected. In addition to highly significant gravitational-wave events, we also provide a list of marginal event candidates with an estimated false-alarm rate less than 1 per 30 days. From these results over the first two observing runs, which include approximately one gravitational-wave detection per 15 days of data searched, we infer merger rates at the 90% confidence intervals of 110-3840 Gpc-3 y-1 for binary neutron stars and 9.7-101 Gpc-3 y-1 for binary black holes assuming fixed population distributions and determine a neutron star-black hole merger rate 90% upper limit of 610 Gpc-3 y-1.

AB - We present the results from three gravitational-wave searches for coalescing compact binaries with component masses above 1 Ma™ during the first and second observing runs of the advanced gravitational-wave detector network. During the first observing run (O1), from September 12, 2015 to January 19, 2016, gravitational waves from three binary black hole mergers were detected. The second observing run (O2), which ran from November 30, 2016 to August 25, 2017, saw the first detection of gravitational waves from a binary neutron star inspiral, in addition to the observation of gravitational waves from a total of seven binary black hole mergers, four of which we report here for the first time: GW170729, GW170809, GW170818, and GW170823. For all significant gravitational-wave events, we provide estimates of the source properties. The detected binary black holes have total masses between 18.6-0.7+3.2 Mâ™ and 84.4-11.1+15.8 Mâ™ and range in distance between 320-110+120 and 2840-1360+1400 Mpc. No neutron star-black hole mergers were detected. In addition to highly significant gravitational-wave events, we also provide a list of marginal event candidates with an estimated false-alarm rate less than 1 per 30 days. From these results over the first two observing runs, which include approximately one gravitational-wave detection per 15 days of data searched, we infer merger rates at the 90% confidence intervals of 110-3840 Gpc-3 y-1 for binary neutron stars and 9.7-101 Gpc-3 y-1 for binary black holes assuming fixed population distributions and determine a neutron star-black hole merger rate 90% upper limit of 610 Gpc-3 y-1.

UR - http://www.scopus.com/inward/record.url?scp=85074412140&partnerID=8YFLogxK

U2 - 10.1103/PhysRevX.9.031040

DO - 10.1103/PhysRevX.9.031040

M3 - Article

VL - 9

JO - Physical Review X

JF - Physical Review X

SN - 2160-3308

IS - 3

M1 - 031040

ER -

Von denselben Autoren