Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 101102 |
Seitenumfang | 17 |
Fachzeitschrift | Physical review letters |
Jahrgang | 125 |
Ausgabenummer | 10 |
Publikationsstatus | Veröffentlicht - 4 Sept. 2020 |
Abstract
On May 21, 2019 at 03:02:29 UTC Advanced LIGO and Advanced Virgo observed a short duration gravitational-wave signal, GW190521, with a three-detector network signal-to-noise ratio of 14.7, and an estimated false-alarm rate of 1 in 4900 yr using a search sensitive to generic transients. If GW190521 is from a quasicircular binary inspiral, then the detected signal is consistent with the merger of two black holes with masses of 85-14+21 Mm and 66-18+17 Mm (90% credible intervals). We infer that the primary black hole mass lies within the gap produced by (pulsational) pair-instability supernova processes, with only a 0.32% probability of being below 65 Mm. We calculate the mass of the remnant to be 142-16+28 Mm, which can be considered an intermediate mass black hole (IMBH). The luminosity distance of the source is 5.3-2.6+2.4 Gpc, corresponding to a redshift of 0.82-0.34+0.28. The inferred rate of mergers similar to GW190521 is 0.13-0.11+0.30 Gpc-3 yr-1.
ASJC Scopus Sachgebiete
- Physik und Astronomie (insg.)
- Allgemeine Physik und Astronomie
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Physical review letters, Jahrgang 125, Nr. 10, 101102, 04.09.2020.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung
}
TY - JOUR
T1 - GW190521: A Binary Black Hole Merger with a Total Mass of 150M⊙
AU - The LIGO Scientific Collaboration
AU - The Virgo Collaboration
AU - Abbott, R.
AU - Abbott, T. D.
AU - Abraham, S.
AU - Acernese, F.
AU - Ackley, K.
AU - Adams, C.
AU - Adhikari, R. X.
AU - Adya, V. B.
AU - Affeldt, C.
AU - Agathos, M.
AU - Agatsuma, K.
AU - Aggarwal, N.
AU - Aguiar, O. D.
AU - Aich, A.
AU - Aiello, L.
AU - Ain, A.
AU - Ajith, P.
AU - Akcay, S.
AU - Allen, G.
AU - Allocca, A.
AU - Altin, P. A.
AU - Amato, A.
AU - Anand, S.
AU - Ananyeva, A.
AU - Anderson, S. B.
AU - Anderson, W. G.
AU - Angelova, S. V.
AU - Ansoldi, S.
AU - Antier, S.
AU - Appert, S.
AU - Arai, K.
AU - Araya, M. C.
AU - Areeda, J. S.
AU - Arène, M.
AU - Arnaud, N.
AU - Aronson, S. M.
AU - Arun, K. G.
AU - Asali, Y.
AU - Ascenzi, S.
AU - Ashton, G.
AU - Aston, S. M.
AU - Danilishin, S. L.
AU - Danzmann, K.
AU - Heurs, M.
AU - Lück, H.
AU - Steinmeyer, D.
AU - Vahlbruch, H.
AU - Wilken, D. M.
AU - Willke, B.
AU - Wittel, H.
AU - Bose, Sukanta
AU - Brown, D. D.
AU - Chen, Y. H.
AU - Gniesmer, J.
AU - Hanke, M. M.
AU - Hennig, J.
AU - Hübner, M. T.
AU - Kumar, Sanjeev
AU - Lang, R. N.
AU - Lee, C. H.
AU - Lee, H. M.
AU - Lee, H. W.
AU - Lee, J.
AU - Lee, K.
AU - Li, X.
AU - Rose, C. A.
AU - Rose, D.
AU - Sanders, J. R.
AU - Schmidt, Patricia
AU - Sun, L.
AU - Wu, D. S.
AU - Zhang, R.
AU - Zhang, H.
AU - Zhu, X. J.
AU - Zhou, M.
AU - Bergamin, Fabio
AU - Bisht, A.
AU - Bode, Nina
AU - Booker, P.
AU - Brinkmann, M.
AU - Cabero, M.
AU - Gohlke, N.
AU - Heinze, J.
AU - de Varona, O.
AU - Hochheim, S.
AU - Junker, J.
AU - Kastaun, W.
AU - Kaufer, Stefan
AU - Khan, S.
AU - Koch, P.
AU - Koper, N.
AU - Köhlenbeck, S. M.
AU - Kringel, V.
AU - Kuehn, G.
AU - Leavey, S.
AU - Lehmann, J.
AU - Liu, J.
AU - Lough, J. D.
AU - Mehmet, M.
AU - Meylahn, Fabian
AU - Mukund, N.
AU - Nery, M.
AU - Ohme, F.
AU - Oppermann, P.
AU - Schreiber, E.
AU - Schulte, B. W.
AU - Setyawati, Y.
AU - Steinke, M.
AU - Weinert, M.
AU - Wellmann, F.
AU - Weßels, Peter
AU - Winkler, W.
AU - Woehler, J.
AU - Standke, M.
AU - Phelps, M.
AU - Aufmuth, Peter
AU - Bergmann, Gerald
AU - Kirchhoff, R.
AU - Nitz, Alexander H.
AU - Wei, Li-Wei
N1 - Funding Information: The authors gratefully acknowledge the support of the United States National Science Foundation (NSF) for the construction and operation of the LIGO Laboratory and Advanced LIGO as well as the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS) and the Netherlands Organization for Scientific Research, for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India, the Department of Science and Technology, India, the Science & Engineering Research Board (SERB), India, the Ministry of Human Resource Development, India, the Spanish Agencia Estatal de Investigación, the Vicepresidència i Conselleria d’Innovació, Recerca i Turisme and the Conselleria d’Educació i Universitat del Govern de les Illes Balears, the Conselleria d’Innovació, Universitats, Ciència i Societat Digital de la Generalitat Valenciana and the CERCA Programme Generalitat de Catalunya, Spain, the National Science Centre of Poland, the Swiss National Science Foundation (SNSF), the Russian Foundation for Basic Research, the Russian Science Foundation, the European Commission, the European Regional Development Funds (ERDF), the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the Hungarian Scientific Research Fund (OTKA), the French Lyon Institute of Origins (LIO), the Belgian Fonds de la Recherche Scientifique (FRS-FNRS), Actions de Recherche Concertées (ARC) and Fonds Wetenschappelijk Onderzoek—Vlaanderen (FWO), Belgium, the Paris Île-de-France Region, the National Research, Development and Innovation Office Hungary (NKFIH), the National Research Foundation of Korea, Industry Canada and the Province of Ontario through the Ministry of Economic Development and Innovation, the Natural Science and Engineering Research Council Canada, the Canadian Institute for Advanced Research, the Brazilian Ministry of Science, Technology, Innovations, and Communications, the International Center for Theoretical Physics South American Institute for Fundamental Research (ICTP-SAIFR), the Research Grants Council of Hong Kong, the National Natural Science Foundation of China (NSFC), the Leverhulme Trust, the Research Corporation, the Ministry of Science and Technology (MOST), Taiwan and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, INFN, and CNRS for provision of computational resources. We thank the referees for useful comments that have improved the manuscript. In addition to the software cited earlier, pesummary was used to produce the publicly released samples and matplotlib was used for plotting.
PY - 2020/9/4
Y1 - 2020/9/4
N2 - On May 21, 2019 at 03:02:29 UTC Advanced LIGO and Advanced Virgo observed a short duration gravitational-wave signal, GW190521, with a three-detector network signal-to-noise ratio of 14.7, and an estimated false-alarm rate of 1 in 4900 yr using a search sensitive to generic transients. If GW190521 is from a quasicircular binary inspiral, then the detected signal is consistent with the merger of two black holes with masses of 85-14+21 Mm and 66-18+17 Mm (90% credible intervals). We infer that the primary black hole mass lies within the gap produced by (pulsational) pair-instability supernova processes, with only a 0.32% probability of being below 65 Mm. We calculate the mass of the remnant to be 142-16+28 Mm, which can be considered an intermediate mass black hole (IMBH). The luminosity distance of the source is 5.3-2.6+2.4 Gpc, corresponding to a redshift of 0.82-0.34+0.28. The inferred rate of mergers similar to GW190521 is 0.13-0.11+0.30 Gpc-3 yr-1.
AB - On May 21, 2019 at 03:02:29 UTC Advanced LIGO and Advanced Virgo observed a short duration gravitational-wave signal, GW190521, with a three-detector network signal-to-noise ratio of 14.7, and an estimated false-alarm rate of 1 in 4900 yr using a search sensitive to generic transients. If GW190521 is from a quasicircular binary inspiral, then the detected signal is consistent with the merger of two black holes with masses of 85-14+21 Mm and 66-18+17 Mm (90% credible intervals). We infer that the primary black hole mass lies within the gap produced by (pulsational) pair-instability supernova processes, with only a 0.32% probability of being below 65 Mm. We calculate the mass of the remnant to be 142-16+28 Mm, which can be considered an intermediate mass black hole (IMBH). The luminosity distance of the source is 5.3-2.6+2.4 Gpc, corresponding to a redshift of 0.82-0.34+0.28. The inferred rate of mergers similar to GW190521 is 0.13-0.11+0.30 Gpc-3 yr-1.
UR - http://www.scopus.com/inward/record.url?scp=85091469786&partnerID=8YFLogxK
U2 - 10.1103/physrevlett.125.101102
DO - 10.1103/physrevlett.125.101102
M3 - Article
VL - 125
JO - Physical review letters
JF - Physical review letters
SN - 0031-9007
IS - 10
M1 - 101102
ER -