Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 023 |
Fachzeitschrift | JCAP |
Jahrgang | 2022 |
Ausgabenummer | 3 |
Publikationsstatus | Veröffentlicht - 10 März 2022 |
Extern publiziert | Ja |
Abstract
The primordial fluctuations on large scales are adiabatic, but on smaller scales this need not be the case. Here we derive the general analytical framework to compute the stochastic gravitational wave background induced by primordial cold dark matter isocurvature fluctuations on small scales. We find that large isocurvature fluctuations can yield an observable gravitational wave signal, with a spectrum distinct from the one induced by adiabatic perturbations, and we provide for the first time the exact analytic expression of the kernel necessary to compute this signal. We then forecast the constraining power of future gravitational wave detectors on dark matter isocurvature on small scales and find they will dramatically improve on existing constraints.
ASJC Scopus Sachgebiete
- Physik und Astronomie (insg.)
- Astronomie und Astrophysik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: JCAP, Jahrgang 2022, Nr. 3, 023, 10.03.2022.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Gravitational waves from dark matter isocurvature
AU - Domènech, Guillem
AU - Passaglia, Samuel
AU - Renaux-Petel, Sébastien
N1 - Publisher Copyright: © 2022 IOP Publishing Ltd and Sissa Medialab.
PY - 2022/3/10
Y1 - 2022/3/10
N2 - The primordial fluctuations on large scales are adiabatic, but on smaller scales this need not be the case. Here we derive the general analytical framework to compute the stochastic gravitational wave background induced by primordial cold dark matter isocurvature fluctuations on small scales. We find that large isocurvature fluctuations can yield an observable gravitational wave signal, with a spectrum distinct from the one induced by adiabatic perturbations, and we provide for the first time the exact analytic expression of the kernel necessary to compute this signal. We then forecast the constraining power of future gravitational wave detectors on dark matter isocurvature on small scales and find they will dramatically improve on existing constraints.
AB - The primordial fluctuations on large scales are adiabatic, but on smaller scales this need not be the case. Here we derive the general analytical framework to compute the stochastic gravitational wave background induced by primordial cold dark matter isocurvature fluctuations on small scales. We find that large isocurvature fluctuations can yield an observable gravitational wave signal, with a spectrum distinct from the one induced by adiabatic perturbations, and we provide for the first time the exact analytic expression of the kernel necessary to compute this signal. We then forecast the constraining power of future gravitational wave detectors on dark matter isocurvature on small scales and find they will dramatically improve on existing constraints.
KW - cosmological perturbation theory
KW - primordial gravitational waves (theory)
UR - http://www.scopus.com/inward/record.url?scp=85126594590&partnerID=8YFLogxK
U2 - 10.1088/1475-7516/2022/03/023
DO - 10.1088/1475-7516/2022/03/023
M3 - Article
VL - 2022
JO - JCAP
JF - JCAP
IS - 3
M1 - 023
ER -