Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 241407 |
Fachzeitschrift | Physical Review B |
Jahrgang | 93 |
Ausgabenummer | 24 |
Publikationsstatus | Veröffentlicht - 21 Juni 2016 |
Abstract
Starting from a Su-Schrieffer-Heeger-like model inferred from first-principles simulations, we show that the metal-insulator transition in In/Si(111) is a first-order grand canonical Peierls transition in which the substrate acts as an electron reservoir for the wires. This model explains naturally the existence of a metastable metallic phase over a wide temperature range below the critical temperature and the sensitivity of the transition to doping. Raman scattering experiments corroborate the softening of the two Peierls deformation modes close to the transition.
ASJC Scopus Sachgebiete
- Werkstoffwissenschaften (insg.)
- Elektronische, optische und magnetische Materialien
- Physik und Astronomie (insg.)
- Physik der kondensierten Materie
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Physical Review B, Jahrgang 93, Nr. 24, 241407, 21.06.2016.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Grand canonical Peierls transition in In/Si(111)
AU - Jeckelmann, Eric
AU - Sanna, Simone
AU - Schmidt, Wolf Gero
AU - Speiser, Eugen
AU - Esser, Norbert
N1 - Publisher Copyright: © 2016 American Physical Society. Copyright: Copyright 2019 Elsevier B.V., All rights reserved.
PY - 2016/6/21
Y1 - 2016/6/21
N2 - Starting from a Su-Schrieffer-Heeger-like model inferred from first-principles simulations, we show that the metal-insulator transition in In/Si(111) is a first-order grand canonical Peierls transition in which the substrate acts as an electron reservoir for the wires. This model explains naturally the existence of a metastable metallic phase over a wide temperature range below the critical temperature and the sensitivity of the transition to doping. Raman scattering experiments corroborate the softening of the two Peierls deformation modes close to the transition.
AB - Starting from a Su-Schrieffer-Heeger-like model inferred from first-principles simulations, we show that the metal-insulator transition in In/Si(111) is a first-order grand canonical Peierls transition in which the substrate acts as an electron reservoir for the wires. This model explains naturally the existence of a metastable metallic phase over a wide temperature range below the critical temperature and the sensitivity of the transition to doping. Raman scattering experiments corroborate the softening of the two Peierls deformation modes close to the transition.
UR - http://www.scopus.com/inward/record.url?scp=84976870537&partnerID=8YFLogxK
U2 - 10.1103/physrevb.93.241407
DO - 10.1103/physrevb.93.241407
M3 - Article
VL - 93
JO - Physical Review B
JF - Physical Review B
SN - 2469-9950
IS - 24
M1 - 241407
ER -