GMMbuilder-user-driven discovery of clustering structure for bioarchaeology

Publikation: Beitrag in Buch/Bericht/Sammelwerk/KonferenzbandAufsatz in KonferenzbandForschungPeer-Review

Autoren

  • Markus Mauder
  • Yulia Bobkova
  • Eirini Ntoutsi

Organisationseinheiten

Externe Organisationen

  • Ludwig-Maximilians-Universität München (LMU)
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Titel des SammelwerksMachine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2016, Proceedings
Herausgeber/-innenBjörn Bringmann, Elisa Fromont, Nikolaj Tatti, Volker Tresp, Pauli Miettinen, Bettina Berendt, Gemma Garriga
Herausgeber (Verlag)Springer Verlag
Seiten8-11
Seitenumfang4
ISBN (Print)9783319461304
PublikationsstatusVeröffentlicht - 3 Sept. 2016
Veranstaltung15th European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD 2016 - Riva del Garda, Italien
Dauer: 19 Sept. 201623 Sept. 2016

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band9853 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Abstract

We present GMMbuilder, a tool that allows domain scientists to build Gaussian Mixture Models (GMM) that adhere to domain specific constraints like spatial coherence. Domain experts use this tool to generate different models, extract stable object communities across these models, and use these communities to interactively design a final clustering model that explains the data but also considers prior beliefs and expectations of the domain experts.

ASJC Scopus Sachgebiete

Zitieren

GMMbuilder-user-driven discovery of clustering structure for bioarchaeology. / Mauder, Markus; Bobkova, Yulia; Ntoutsi, Eirini.
Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2016, Proceedings. Hrsg. / Björn Bringmann; Elisa Fromont; Nikolaj Tatti; Volker Tresp; Pauli Miettinen; Bettina Berendt; Gemma Garriga. Springer Verlag, 2016. S. 8-11 (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Band 9853 LNCS).

Publikation: Beitrag in Buch/Bericht/Sammelwerk/KonferenzbandAufsatz in KonferenzbandForschungPeer-Review

Mauder, M, Bobkova, Y & Ntoutsi, E 2016, GMMbuilder-user-driven discovery of clustering structure for bioarchaeology. in B Bringmann, E Fromont, N Tatti, V Tresp, P Miettinen, B Berendt & G Garriga (Hrsg.), Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2016, Proceedings. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Bd. 9853 LNCS, Springer Verlag, S. 8-11, 15th European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD 2016, Riva del Garda, Italien, 19 Sept. 2016. https://doi.org/10.1007/978-3-319-46131-1_2
Mauder, M., Bobkova, Y., & Ntoutsi, E. (2016). GMMbuilder-user-driven discovery of clustering structure for bioarchaeology. In B. Bringmann, E. Fromont, N. Tatti, V. Tresp, P. Miettinen, B. Berendt, & G. Garriga (Hrsg.), Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2016, Proceedings (S. 8-11). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Band 9853 LNCS). Springer Verlag. https://doi.org/10.1007/978-3-319-46131-1_2
Mauder M, Bobkova Y, Ntoutsi E. GMMbuilder-user-driven discovery of clustering structure for bioarchaeology. in Bringmann B, Fromont E, Tatti N, Tresp V, Miettinen P, Berendt B, Garriga G, Hrsg., Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2016, Proceedings. Springer Verlag. 2016. S. 8-11. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)). doi: 10.1007/978-3-319-46131-1_2
Mauder, Markus ; Bobkova, Yulia ; Ntoutsi, Eirini. / GMMbuilder-user-driven discovery of clustering structure for bioarchaeology. Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2016, Proceedings. Hrsg. / Björn Bringmann ; Elisa Fromont ; Nikolaj Tatti ; Volker Tresp ; Pauli Miettinen ; Bettina Berendt ; Gemma Garriga. Springer Verlag, 2016. S. 8-11 (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)).
Download
@inproceedings{1145b7760ebf43258458c488d29eef3a,
title = "GMMbuilder-user-driven discovery of clustering structure for bioarchaeology",
abstract = "We present GMMbuilder, a tool that allows domain scientists to build Gaussian Mixture Models (GMM) that adhere to domain specific constraints like spatial coherence. Domain experts use this tool to generate different models, extract stable object communities across these models, and use these communities to interactively design a final clustering model that explains the data but also considers prior beliefs and expectations of the domain experts.",
keywords = "Bioarchaeology, Community detection, Demo, Gaussian mixture models, Interactive clustering, Isotopic mapping",
author = "Markus Mauder and Yulia Bobkova and Eirini Ntoutsi",
year = "2016",
month = sep,
day = "3",
doi = "10.1007/978-3-319-46131-1_2",
language = "English",
isbn = "9783319461304",
series = "Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)",
publisher = "Springer Verlag",
pages = "8--11",
editor = "Bj{\"o}rn Bringmann and Elisa Fromont and Nikolaj Tatti and Volker Tresp and Pauli Miettinen and Bettina Berendt and Gemma Garriga",
booktitle = "Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2016, Proceedings",
address = "Germany",
note = "15th European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD 2016 ; Conference date: 19-09-2016 Through 23-09-2016",

}

Download

TY - GEN

T1 - GMMbuilder-user-driven discovery of clustering structure for bioarchaeology

AU - Mauder, Markus

AU - Bobkova, Yulia

AU - Ntoutsi, Eirini

PY - 2016/9/3

Y1 - 2016/9/3

N2 - We present GMMbuilder, a tool that allows domain scientists to build Gaussian Mixture Models (GMM) that adhere to domain specific constraints like spatial coherence. Domain experts use this tool to generate different models, extract stable object communities across these models, and use these communities to interactively design a final clustering model that explains the data but also considers prior beliefs and expectations of the domain experts.

AB - We present GMMbuilder, a tool that allows domain scientists to build Gaussian Mixture Models (GMM) that adhere to domain specific constraints like spatial coherence. Domain experts use this tool to generate different models, extract stable object communities across these models, and use these communities to interactively design a final clustering model that explains the data but also considers prior beliefs and expectations of the domain experts.

KW - Bioarchaeology

KW - Community detection

KW - Demo

KW - Gaussian mixture models

KW - Interactive clustering

KW - Isotopic mapping

UR - http://www.scopus.com/inward/record.url?scp=84988661501&partnerID=8YFLogxK

U2 - 10.1007/978-3-319-46131-1_2

DO - 10.1007/978-3-319-46131-1_2

M3 - Conference contribution

AN - SCOPUS:84988661501

SN - 9783319461304

T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

SP - 8

EP - 11

BT - Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2016, Proceedings

A2 - Bringmann, Björn

A2 - Fromont, Elisa

A2 - Tatti, Nikolaj

A2 - Tresp, Volker

A2 - Miettinen, Pauli

A2 - Berendt, Bettina

A2 - Garriga, Gemma

PB - Springer Verlag

T2 - 15th European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD 2016

Y2 - 19 September 2016 through 23 September 2016

ER -