Global solutions for semilinear parabolic evolution problems with Hölder continuous nonlinearities

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Bogdan Vasile Matioc
  • Christoph Walker

Organisationseinheiten

Externe Organisationen

  • Universität Regensburg
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seitenumfang19
FachzeitschriftBulletin of the London Mathematical Society
PublikationsstatusAngenommen/Im Druck - 14 Nov. 2024

Abstract

It is shown that semilinear parabolic evolution equations (Formula presented.) featuring Hölder continuous nonlinearities (Formula presented.) with at most linear growth possess global strong solutions for a general class of initial data. The abstract results are applied to a recent model describing front propagation in bushfires and in the context of a reaction–diffusion system.

ASJC Scopus Sachgebiete

Zitieren

Global solutions for semilinear parabolic evolution problems with Hölder continuous nonlinearities. / Matioc, Bogdan Vasile; Walker, Christoph.
in: Bulletin of the London Mathematical Society, 14.11.2024.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Download
@article{47b2b5d55460499ba073f4a796d66d38,
title = "Global solutions for semilinear parabolic evolution problems with H{\"o}lder continuous nonlinearities",
abstract = "It is shown that semilinear parabolic evolution equations (Formula presented.) featuring H{\"o}lder continuous nonlinearities (Formula presented.) with at most linear growth possess global strong solutions for a general class of initial data. The abstract results are applied to a recent model describing front propagation in bushfires and in the context of a reaction–diffusion system.",
author = "Matioc, {Bogdan Vasile} and Christoph Walker",
note = "Publisher Copyright: {\textcopyright} 2024 The Author(s). Bulletin of the London Mathematical Society is copyright {\textcopyright} London Mathematical Society.",
year = "2024",
month = nov,
day = "14",
doi = "10.48550/arXiv.2404.11089",
language = "English",
journal = "Bulletin of the London Mathematical Society",
issn = "0024-6093",
publisher = "John Wiley and Sons Ltd",

}

Download

TY - JOUR

T1 - Global solutions for semilinear parabolic evolution problems with Hölder continuous nonlinearities

AU - Matioc, Bogdan Vasile

AU - Walker, Christoph

N1 - Publisher Copyright: © 2024 The Author(s). Bulletin of the London Mathematical Society is copyright © London Mathematical Society.

PY - 2024/11/14

Y1 - 2024/11/14

N2 - It is shown that semilinear parabolic evolution equations (Formula presented.) featuring Hölder continuous nonlinearities (Formula presented.) with at most linear growth possess global strong solutions for a general class of initial data. The abstract results are applied to a recent model describing front propagation in bushfires and in the context of a reaction–diffusion system.

AB - It is shown that semilinear parabolic evolution equations (Formula presented.) featuring Hölder continuous nonlinearities (Formula presented.) with at most linear growth possess global strong solutions for a general class of initial data. The abstract results are applied to a recent model describing front propagation in bushfires and in the context of a reaction–diffusion system.

UR - http://www.scopus.com/inward/record.url?scp=85211475496&partnerID=8YFLogxK

U2 - 10.48550/arXiv.2404.11089

DO - 10.48550/arXiv.2404.11089

M3 - Article

AN - SCOPUS:85211475496

JO - Bulletin of the London Mathematical Society

JF - Bulletin of the London Mathematical Society

SN - 0024-6093

ER -