Details
Originalsprache | Englisch |
---|---|
Seitenumfang | 19 |
Fachzeitschrift | Bulletin of the London Mathematical Society |
Publikationsstatus | Angenommen/Im Druck - 14 Nov. 2024 |
Abstract
It is shown that semilinear parabolic evolution equations (Formula presented.) featuring Hölder continuous nonlinearities (Formula presented.) with at most linear growth possess global strong solutions for a general class of initial data. The abstract results are applied to a recent model describing front propagation in bushfires and in the context of a reaction–diffusion system.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Allgemeine Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Bulletin of the London Mathematical Society, 14.11.2024.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Global solutions for semilinear parabolic evolution problems with Hölder continuous nonlinearities
AU - Matioc, Bogdan Vasile
AU - Walker, Christoph
N1 - Publisher Copyright: © 2024 The Author(s). Bulletin of the London Mathematical Society is copyright © London Mathematical Society.
PY - 2024/11/14
Y1 - 2024/11/14
N2 - It is shown that semilinear parabolic evolution equations (Formula presented.) featuring Hölder continuous nonlinearities (Formula presented.) with at most linear growth possess global strong solutions for a general class of initial data. The abstract results are applied to a recent model describing front propagation in bushfires and in the context of a reaction–diffusion system.
AB - It is shown that semilinear parabolic evolution equations (Formula presented.) featuring Hölder continuous nonlinearities (Formula presented.) with at most linear growth possess global strong solutions for a general class of initial data. The abstract results are applied to a recent model describing front propagation in bushfires and in the context of a reaction–diffusion system.
UR - http://www.scopus.com/inward/record.url?scp=85211475496&partnerID=8YFLogxK
U2 - 10.48550/arXiv.2404.11089
DO - 10.48550/arXiv.2404.11089
M3 - Article
AN - SCOPUS:85211475496
JO - Bulletin of the London Mathematical Society
JF - Bulletin of the London Mathematical Society
SN - 0024-6093
ER -