Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 73-84 |
Seitenumfang | 12 |
Fachzeitschrift | Journal of Differential Equations |
Jahrgang | 197 |
Ausgabenummer | 1 |
Publikationsstatus | Veröffentlicht - 9 Aug. 2003 |
Abstract
We present an approach for proving the global existence of classical solutions of certain quasilinear parabolic systems with homogeneous Dirichlet boundary conditions in bounded domains with a smooth boundary.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Analysis
- Mathematik (insg.)
- Angewandte Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Journal of Differential Equations, Jahrgang 197, Nr. 1, 09.08.2003, S. 73-84.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Global solutions for quasilinear parabolic systems
AU - Constantin, Adrian
AU - Escher, Joachim
AU - Yin, Zhaoyang
PY - 2003/8/9
Y1 - 2003/8/9
N2 - We present an approach for proving the global existence of classical solutions of certain quasilinear parabolic systems with homogeneous Dirichlet boundary conditions in bounded domains with a smooth boundary.
AB - We present an approach for proving the global existence of classical solutions of certain quasilinear parabolic systems with homogeneous Dirichlet boundary conditions in bounded domains with a smooth boundary.
KW - Dirichlet condition
KW - Global solutions
KW - Quasilinear parabolic systems
UR - http://www.scopus.com/inward/record.url?scp=1042279865&partnerID=8YFLogxK
U2 - 10.1016/S0022-0396(03)00165-7
DO - 10.1016/S0022-0396(03)00165-7
M3 - Article
AN - SCOPUS:1042279865
VL - 197
SP - 73
EP - 84
JO - Journal of Differential Equations
JF - Journal of Differential Equations
SN - 0022-0396
IS - 1
ER -