Global solutions for quasilinear parabolic problems

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

Organisationseinheiten

Externe Organisationen

  • Lund University
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)97-111
Seitenumfang15
FachzeitschriftJournal of Evolution Equations
Jahrgang2
Ausgabenummer1
PublikationsstatusVeröffentlicht - 2002

Abstract

Results on the global existence of classical solutions for quasilinear parabolic equations in bounded domains with homogeneous Dirichlet or Neumann boundary conditions are presented. Besides quasilinear parabolic equations, the method is also applicable to some weakly-coupled reaction-diffusion systems and to elliptic equations with nonlinear dynamic boundary conditions.

ASJC Scopus Sachgebiete

Zitieren

Global solutions for quasilinear parabolic problems. / Constantin, Adrian; Escher, Joachim.
in: Journal of Evolution Equations, Jahrgang 2, Nr. 1, 2002, S. 97-111.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Constantin A, Escher J. Global solutions for quasilinear parabolic problems. Journal of Evolution Equations. 2002;2(1):97-111. doi: 10.1007/s00028-002-8081-2
Constantin, Adrian ; Escher, Joachim. / Global solutions for quasilinear parabolic problems. in: Journal of Evolution Equations. 2002 ; Jahrgang 2, Nr. 1. S. 97-111.
Download
@article{9f4d8aadef9b4e87b7a61440253b94c0,
title = "Global solutions for quasilinear parabolic problems",
abstract = "Results on the global existence of classical solutions for quasilinear parabolic equations in bounded domains with homogeneous Dirichlet or Neumann boundary conditions are presented. Besides quasilinear parabolic equations, the method is also applicable to some weakly-coupled reaction-diffusion systems and to elliptic equations with nonlinear dynamic boundary conditions.",
keywords = "Dynamic boundary conditions, Elliptic equations, Global solutions, Quasilinear parabolic equations, Weakly coupled reaction-diffusion systems",
author = "Adrian Constantin and Joachim Escher",
year = "2002",
doi = "10.1007/s00028-002-8081-2",
language = "English",
volume = "2",
pages = "97--111",
journal = "Journal of Evolution Equations",
issn = "1424-3199",
publisher = "Birkhauser Verlag Basel",
number = "1",

}

Download

TY - JOUR

T1 - Global solutions for quasilinear parabolic problems

AU - Constantin, Adrian

AU - Escher, Joachim

PY - 2002

Y1 - 2002

N2 - Results on the global existence of classical solutions for quasilinear parabolic equations in bounded domains with homogeneous Dirichlet or Neumann boundary conditions are presented. Besides quasilinear parabolic equations, the method is also applicable to some weakly-coupled reaction-diffusion systems and to elliptic equations with nonlinear dynamic boundary conditions.

AB - Results on the global existence of classical solutions for quasilinear parabolic equations in bounded domains with homogeneous Dirichlet or Neumann boundary conditions are presented. Besides quasilinear parabolic equations, the method is also applicable to some weakly-coupled reaction-diffusion systems and to elliptic equations with nonlinear dynamic boundary conditions.

KW - Dynamic boundary conditions

KW - Elliptic equations

KW - Global solutions

KW - Quasilinear parabolic equations

KW - Weakly coupled reaction-diffusion systems

UR - http://www.scopus.com/inward/record.url?scp=0142014510&partnerID=8YFLogxK

U2 - 10.1007/s00028-002-8081-2

DO - 10.1007/s00028-002-8081-2

M3 - Article

AN - SCOPUS:0142014510

VL - 2

SP - 97

EP - 111

JO - Journal of Evolution Equations

JF - Journal of Evolution Equations

SN - 1424-3199

IS - 1

ER -

Von denselben Autoren