Global bifurcation of positive equilibria in nonlinear population models

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Christoph Walker

Organisationseinheiten

Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)1756-1776
Seitenumfang21
FachzeitschriftJournal of differential equations
Jahrgang248
Ausgabenummer7
PublikationsstatusVeröffentlicht - 1 Apr. 2010

Abstract

Existence of nontrivial nonnegative equilibrium solutions for age-structured population models with nonlinear diffusion is investigated. Introducing a parameter measuring the intensity of the fertility, global bifurcation is shown of a branch of positive equilibrium solutions emanating from the trivial equilibrium. Moreover, for the parameter-independent model we establish existence of positive equilibria by means of a fixed point theorem for conical shells.

ASJC Scopus Sachgebiete

Zitieren

Global bifurcation of positive equilibria in nonlinear population models. / Walker, Christoph.
in: Journal of differential equations, Jahrgang 248, Nr. 7, 01.04.2010, S. 1756-1776.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Walker C. Global bifurcation of positive equilibria in nonlinear population models. Journal of differential equations. 2010 Apr 1;248(7):1756-1776. doi: 10.1016/j.jde.2009.11.028
Walker, Christoph. / Global bifurcation of positive equilibria in nonlinear population models. in: Journal of differential equations. 2010 ; Jahrgang 248, Nr. 7. S. 1756-1776.
Download
@article{5dbd03145c044473942cfa4135c3a0fb,
title = "Global bifurcation of positive equilibria in nonlinear population models",
abstract = "Existence of nontrivial nonnegative equilibrium solutions for age-structured population models with nonlinear diffusion is investigated. Introducing a parameter measuring the intensity of the fertility, global bifurcation is shown of a branch of positive equilibrium solutions emanating from the trivial equilibrium. Moreover, for the parameter-independent model we establish existence of positive equilibria by means of a fixed point theorem for conical shells.",
keywords = "Age structure, Global bifurcation, Maximal regularity, Nonlinear diffusion, Population models",
author = "Christoph Walker",
note = "Copyright: Copyright 2010 Elsevier B.V., All rights reserved.",
year = "2010",
month = apr,
day = "1",
doi = "10.1016/j.jde.2009.11.028",
language = "English",
volume = "248",
pages = "1756--1776",
journal = "Journal of differential equations",
issn = "0022-0396",
publisher = "Academic Press Inc.",
number = "7",

}

Download

TY - JOUR

T1 - Global bifurcation of positive equilibria in nonlinear population models

AU - Walker, Christoph

N1 - Copyright: Copyright 2010 Elsevier B.V., All rights reserved.

PY - 2010/4/1

Y1 - 2010/4/1

N2 - Existence of nontrivial nonnegative equilibrium solutions for age-structured population models with nonlinear diffusion is investigated. Introducing a parameter measuring the intensity of the fertility, global bifurcation is shown of a branch of positive equilibrium solutions emanating from the trivial equilibrium. Moreover, for the parameter-independent model we establish existence of positive equilibria by means of a fixed point theorem for conical shells.

AB - Existence of nontrivial nonnegative equilibrium solutions for age-structured population models with nonlinear diffusion is investigated. Introducing a parameter measuring the intensity of the fertility, global bifurcation is shown of a branch of positive equilibrium solutions emanating from the trivial equilibrium. Moreover, for the parameter-independent model we establish existence of positive equilibria by means of a fixed point theorem for conical shells.

KW - Age structure

KW - Global bifurcation

KW - Maximal regularity

KW - Nonlinear diffusion

KW - Population models

UR - http://www.scopus.com/inward/record.url?scp=75849133193&partnerID=8YFLogxK

U2 - 10.1016/j.jde.2009.11.028

DO - 10.1016/j.jde.2009.11.028

M3 - Article

AN - SCOPUS:75849133193

VL - 248

SP - 1756

EP - 1776

JO - Journal of differential equations

JF - Journal of differential equations

SN - 0022-0396

IS - 7

ER -