Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 924-929 |
Seitenumfang | 6 |
Fachzeitschrift | Procedia CIRP |
Jahrgang | 94 |
Publikationsstatus | Veröffentlicht - 15 Sept. 2020 |
Extern publiziert | Ja |
Veranstaltung | 11th CIRP Conference on Photonic Technologies, LANE 2020 - Virtual, Online Dauer: 7 Sept. 2020 → 10 Sept. 2020 |
Abstract
The high cost of sub-picosecond pulsed lasers currently used to produce laser-induced periodic surface structures (LIPSS), also called ripples, on borosilicate and soda-lime glass limits the technique's industrial and scientific utility. To increase accessibility, we describe here a LIPSS-fabrication process using a less expensive 15 ps-pulsed laser system equipped with a galvanometer scanner system. By carefully considering interpulse effects, we combined novel scanning strategies with optimized laser and scanning parameters to generate the nanostructures over a macroscopic area. The resulting LIPSS's spatial periods display both metal-like and dielectric-like behaviour. Using different scanning strategies allows for low processing times and highly homogenized surfaces.
ASJC Scopus Sachgebiete
- Ingenieurwesen (insg.)
- Steuerungs- und Systemtechnik
- Ingenieurwesen (insg.)
- Wirtschaftsingenieurwesen und Fertigungstechnik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Procedia CIRP, Jahrgang 94, 15.09.2020, S. 924-929.
Publikation: Beitrag in Fachzeitschrift › Konferenzaufsatz in Fachzeitschrift › Forschung › Peer-Review
}
TY - JOUR
T1 - Generation of laser-induced periodic surface structures on different glasses by a picosecond-pulsed laser
AU - Bischoff, K.
AU - Quigley, P.
AU - Hohnholz, A.
AU - Jäschke, P.
AU - Kaierle, S.
N1 - Funding Information: The authors are grateful for financial support provided within the project GLaSIDeE (FKZ: 16KN0608), funded by the German Federal Ministry of Economic Affairs and Energy (BMWi).
PY - 2020/9/15
Y1 - 2020/9/15
N2 - The high cost of sub-picosecond pulsed lasers currently used to produce laser-induced periodic surface structures (LIPSS), also called ripples, on borosilicate and soda-lime glass limits the technique's industrial and scientific utility. To increase accessibility, we describe here a LIPSS-fabrication process using a less expensive 15 ps-pulsed laser system equipped with a galvanometer scanner system. By carefully considering interpulse effects, we combined novel scanning strategies with optimized laser and scanning parameters to generate the nanostructures over a macroscopic area. The resulting LIPSS's spatial periods display both metal-like and dielectric-like behaviour. Using different scanning strategies allows for low processing times and highly homogenized surfaces.
AB - The high cost of sub-picosecond pulsed lasers currently used to produce laser-induced periodic surface structures (LIPSS), also called ripples, on borosilicate and soda-lime glass limits the technique's industrial and scientific utility. To increase accessibility, we describe here a LIPSS-fabrication process using a less expensive 15 ps-pulsed laser system equipped with a galvanometer scanner system. By carefully considering interpulse effects, we combined novel scanning strategies with optimized laser and scanning parameters to generate the nanostructures over a macroscopic area. The resulting LIPSS's spatial periods display both metal-like and dielectric-like behaviour. Using different scanning strategies allows for low processing times and highly homogenized surfaces.
KW - Borosilicate glass
KW - Diffractive marking
KW - Laser-induced periodic surface structures (LIPSS)
KW - Picosecond-pulsed laser
KW - Ripples
KW - Soda-lime glass
KW - Ultrashort pulsed laser
UR - http://www.scopus.com/inward/record.url?scp=85093360278&partnerID=8YFLogxK
U2 - 10.1016/j.procir.2020.09.098
DO - 10.1016/j.procir.2020.09.098
M3 - Conference article
AN - SCOPUS:85093360278
VL - 94
SP - 924
EP - 929
JO - Procedia CIRP
JF - Procedia CIRP
SN - 2212-8271
T2 - 11th CIRP Conference on Photonic Technologies, LANE 2020
Y2 - 7 September 2020 through 10 September 2020
ER -