Generalized solutions to a chemotaxis-Navier-Stokes system with arbitrary superlinear degradation

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Mengyao Ding
  • Johannes Lankeit

Organisationseinheiten

Externe Organisationen

  • Peking University
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)1022-1052
Seitenumfang31
FachzeitschriftSIAM Journal on Mathematical Analysis
Jahrgang54
Ausgabenummer1
Frühes Online-Datum10 Feb. 2022
PublikationsstatusVeröffentlicht - Feb. 2022

Abstract

In this work, we study a chemotaxis-Navier-Stokes model in a two-dimensional setting as below, \begin{eqnarray} \left\{ \begin{array}{llll} \displaystyle n_{t}+\mathbf{u}\cdot\nabla n=\Delta n-\nabla \cdot(n\nabla c)+f(n), &&x\in\Omega,\,t>0,\\ \displaystyle c_{t}+\mathbf{u}\cdot\nabla c=\Delta c - c+ n, &&x\in\Omega,\,t>0,\\ \displaystyle \mathbf{u}_{t}+\kappa(\mathbf{u}\cdot\nabla)\mathbf{u}=\Delta \mathbf{u} +\nabla P+ n\nabla\phi, &&x\in\Omega,\,t>0,\\ \displaystyle \nabla\cdot\mathbf{u}=0,&&x\in\Omega,\,t>0.\\ \end{array} \right. \end{eqnarray} Motivated by a recent work due to Winkler, we aim at investigating generalized solvability for the model the without imposing a critical superlinear exponent restriction on the logistic source function \(f\). Specifically, it is proven in the present work that there exists a triple of integrable functions \((n,c,\mathbf{u})\) solving the system globally in a generalized sense provided that \(f\in C^1([0,\infty))\) satisfies \(f(0)\ge0\) and \(f(n)\le rn-\mu n^{\gamma}\) (\(n\ge0\)) with any \(\gamma>1\). Our result indicates that persistent Dirac-type singularities can be ruled out in our model under the aforementioned mild assumption on \(f\). After giving the existence result for the system, we also show that the generalized solution exhibits eventual smoothness as long as \(\mu/r\) is sufficiently large.

ASJC Scopus Sachgebiete

Zitieren

Generalized solutions to a chemotaxis-Navier-Stokes system with arbitrary superlinear degradation. / Ding, Mengyao; Lankeit, Johannes.
in: SIAM Journal on Mathematical Analysis, Jahrgang 54, Nr. 1, 02.2022, S. 1022-1052.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Ding M, Lankeit J. Generalized solutions to a chemotaxis-Navier-Stokes system with arbitrary superlinear degradation. SIAM Journal on Mathematical Analysis. 2022 Feb;54(1):1022-1052. Epub 2022 Feb 10. doi: 10.48550/arXiv.2103.17199, 10.1137/21M140907X
Download
@article{5fb848fa297647a9bda0c18e66fbeda4,
title = "Generalized solutions to a chemotaxis-Navier-Stokes system with arbitrary superlinear degradation",
abstract = " In this work, we study a chemotaxis-Navier-Stokes model in a two-dimensional setting as below, \begin{eqnarray} \left\{ \begin{array}{llll} \displaystyle n_{t}+\mathbf{u}\cdot\nabla n=\Delta n-\nabla \cdot(n\nabla c)+f(n), &&x\in\Omega,\,t>0,\\ \displaystyle c_{t}+\mathbf{u}\cdot\nabla c=\Delta c - c+ n, &&x\in\Omega,\,t>0,\\ \displaystyle \mathbf{u}_{t}+\kappa(\mathbf{u}\cdot\nabla)\mathbf{u}=\Delta \mathbf{u} +\nabla P+ n\nabla\phi, &&x\in\Omega,\,t>0,\\ \displaystyle \nabla\cdot\mathbf{u}=0,&&x\in\Omega,\,t>0.\\ \end{array} \right. \end{eqnarray} Motivated by a recent work due to Winkler, we aim at investigating generalized solvability for the model the without imposing a critical superlinear exponent restriction on the logistic source function \(f\). Specifically, it is proven in the present work that there exists a triple of integrable functions \((n,c,\mathbf{u})\) solving the system globally in a generalized sense provided that \(f\in C^1([0,\infty))\) satisfies \(f(0)\ge0\) and \(f(n)\le rn-\mu n^{\gamma}\) (\(n\ge0\)) with any \(\gamma>1\). Our result indicates that persistent Dirac-type singularities can be ruled out in our model under the aforementioned mild assumption on \(f\). After giving the existence result for the system, we also show that the generalized solution exhibits eventual smoothness as long as \(\mu/r\) is sufficiently large. ",
keywords = "math.AP, 92C17, 35K55, 35A01, 35D99, eventual smoothness, fluid, logistic source, generalized solution, chemotaxis",
author = "Mengyao Ding and Johannes Lankeit",
year = "2022",
month = feb,
doi = "10.48550/arXiv.2103.17199",
language = "English",
volume = "54",
pages = "1022--1052",
journal = "SIAM Journal on Mathematical Analysis",
issn = "0036-1410",
publisher = "Society for Industrial and Applied Mathematics Publications",
number = "1",

}

Download

TY - JOUR

T1 - Generalized solutions to a chemotaxis-Navier-Stokes system with arbitrary superlinear degradation

AU - Ding, Mengyao

AU - Lankeit, Johannes

PY - 2022/2

Y1 - 2022/2

N2 - In this work, we study a chemotaxis-Navier-Stokes model in a two-dimensional setting as below, \begin{eqnarray} \left\{ \begin{array}{llll} \displaystyle n_{t}+\mathbf{u}\cdot\nabla n=\Delta n-\nabla \cdot(n\nabla c)+f(n), &&x\in\Omega,\,t>0,\\ \displaystyle c_{t}+\mathbf{u}\cdot\nabla c=\Delta c - c+ n, &&x\in\Omega,\,t>0,\\ \displaystyle \mathbf{u}_{t}+\kappa(\mathbf{u}\cdot\nabla)\mathbf{u}=\Delta \mathbf{u} +\nabla P+ n\nabla\phi, &&x\in\Omega,\,t>0,\\ \displaystyle \nabla\cdot\mathbf{u}=0,&&x\in\Omega,\,t>0.\\ \end{array} \right. \end{eqnarray} Motivated by a recent work due to Winkler, we aim at investigating generalized solvability for the model the without imposing a critical superlinear exponent restriction on the logistic source function \(f\). Specifically, it is proven in the present work that there exists a triple of integrable functions \((n,c,\mathbf{u})\) solving the system globally in a generalized sense provided that \(f\in C^1([0,\infty))\) satisfies \(f(0)\ge0\) and \(f(n)\le rn-\mu n^{\gamma}\) (\(n\ge0\)) with any \(\gamma>1\). Our result indicates that persistent Dirac-type singularities can be ruled out in our model under the aforementioned mild assumption on \(f\). After giving the existence result for the system, we also show that the generalized solution exhibits eventual smoothness as long as \(\mu/r\) is sufficiently large.

AB - In this work, we study a chemotaxis-Navier-Stokes model in a two-dimensional setting as below, \begin{eqnarray} \left\{ \begin{array}{llll} \displaystyle n_{t}+\mathbf{u}\cdot\nabla n=\Delta n-\nabla \cdot(n\nabla c)+f(n), &&x\in\Omega,\,t>0,\\ \displaystyle c_{t}+\mathbf{u}\cdot\nabla c=\Delta c - c+ n, &&x\in\Omega,\,t>0,\\ \displaystyle \mathbf{u}_{t}+\kappa(\mathbf{u}\cdot\nabla)\mathbf{u}=\Delta \mathbf{u} +\nabla P+ n\nabla\phi, &&x\in\Omega,\,t>0,\\ \displaystyle \nabla\cdot\mathbf{u}=0,&&x\in\Omega,\,t>0.\\ \end{array} \right. \end{eqnarray} Motivated by a recent work due to Winkler, we aim at investigating generalized solvability for the model the without imposing a critical superlinear exponent restriction on the logistic source function \(f\). Specifically, it is proven in the present work that there exists a triple of integrable functions \((n,c,\mathbf{u})\) solving the system globally in a generalized sense provided that \(f\in C^1([0,\infty))\) satisfies \(f(0)\ge0\) and \(f(n)\le rn-\mu n^{\gamma}\) (\(n\ge0\)) with any \(\gamma>1\). Our result indicates that persistent Dirac-type singularities can be ruled out in our model under the aforementioned mild assumption on \(f\). After giving the existence result for the system, we also show that the generalized solution exhibits eventual smoothness as long as \(\mu/r\) is sufficiently large.

KW - math.AP

KW - 92C17, 35K55, 35A01, 35D99

KW - eventual smoothness

KW - fluid

KW - logistic source

KW - generalized solution

KW - chemotaxis

UR - http://www.scopus.com/inward/record.url?scp=85128987478&partnerID=8YFLogxK

U2 - 10.48550/arXiv.2103.17199

DO - 10.48550/arXiv.2103.17199

M3 - Article

VL - 54

SP - 1022

EP - 1052

JO - SIAM Journal on Mathematical Analysis

JF - SIAM Journal on Mathematical Analysis

SN - 0036-1410

IS - 1

ER -