Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 39-44 |
Seitenumfang | 6 |
Fachzeitschrift | International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives |
Jahrgang | 38 |
Publikationsstatus | Veröffentlicht - 2010 |
Veranstaltung | Joint International Conference on Theory, Data Handling and Modelling in GeoSpatial Information Science - Hong Kong, Hongkong Dauer: 26 Mai 2010 → 28 Mai 2010 |
Abstract
Especially for landmark buildings or in the context of cultural heritage documentation, highly detailed digital models are being created in many places. In some of these models, surfaces are represented by tiles which are individually modeled as solid shapes. In many applications, the high complexity of these models has to be reduced for more x efficient visualization and analysis. In our paper, we introduce an approach to derive versions at different scales from such a model through the generalization method of typification that works for curved underlying surfaces. Using the example of tiles placed on a curved roof ' which occur, for example, very frequently in ancient Chinese architecture, the original set of tiles is replaced by fewer but bigger tiles while keeping a similar appearance. In the first step, the distribution of the central points of the tiles is approximated by a spline surface. This is necessary because curved roof surfaces cannot be approximated by planes at large scales. After that, the new set of tiles with less rows and/or columns is distributed along a spline surface generated from a morphing of the original surface towards a plane. The degree of morphing is dependent on the desired target scale. If the surface can be represented as a plane at the given resolution, the tiles may be converted to a bump map or a simple texture for visualization. In the final part, a perception-based method using CSF (contrast sensitivity function) is introduced to determine an appropriate LoD (level of detail) version of the model for a given viewing scenario (point of view and camera properties) at runtime.
ASJC Scopus Sachgebiete
- Informatik (insg.)
- Information systems
- Sozialwissenschaften (insg.)
- Geografie, Planung und Entwicklung
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, Jahrgang 38, 2010, S. 39-44.
Publikation: Beitrag in Fachzeitschrift › Konferenzaufsatz in Fachzeitschrift › Forschung › Peer-Review
}
TY - JOUR
T1 - Generalization of tiled models with curved surfaces using typification
AU - Guercke, Richard
AU - Zhao, Junqiao
AU - Brenner, Claus
AU - Zhu, Qing
PY - 2010
Y1 - 2010
N2 - Especially for landmark buildings or in the context of cultural heritage documentation, highly detailed digital models are being created in many places. In some of these models, surfaces are represented by tiles which are individually modeled as solid shapes. In many applications, the high complexity of these models has to be reduced for more x efficient visualization and analysis. In our paper, we introduce an approach to derive versions at different scales from such a model through the generalization method of typification that works for curved underlying surfaces. Using the example of tiles placed on a curved roof ' which occur, for example, very frequently in ancient Chinese architecture, the original set of tiles is replaced by fewer but bigger tiles while keeping a similar appearance. In the first step, the distribution of the central points of the tiles is approximated by a spline surface. This is necessary because curved roof surfaces cannot be approximated by planes at large scales. After that, the new set of tiles with less rows and/or columns is distributed along a spline surface generated from a morphing of the original surface towards a plane. The degree of morphing is dependent on the desired target scale. If the surface can be represented as a plane at the given resolution, the tiles may be converted to a bump map or a simple texture for visualization. In the final part, a perception-based method using CSF (contrast sensitivity function) is introduced to determine an appropriate LoD (level of detail) version of the model for a given viewing scenario (point of view and camera properties) at runtime.
AB - Especially for landmark buildings or in the context of cultural heritage documentation, highly detailed digital models are being created in many places. In some of these models, surfaces are represented by tiles which are individually modeled as solid shapes. In many applications, the high complexity of these models has to be reduced for more x efficient visualization and analysis. In our paper, we introduce an approach to derive versions at different scales from such a model through the generalization method of typification that works for curved underlying surfaces. Using the example of tiles placed on a curved roof ' which occur, for example, very frequently in ancient Chinese architecture, the original set of tiles is replaced by fewer but bigger tiles while keeping a similar appearance. In the first step, the distribution of the central points of the tiles is approximated by a spline surface. This is necessary because curved roof surfaces cannot be approximated by planes at large scales. After that, the new set of tiles with less rows and/or columns is distributed along a spline surface generated from a morphing of the original surface towards a plane. The degree of morphing is dependent on the desired target scale. If the surface can be represented as a plane at the given resolution, the tiles may be converted to a bump map or a simple texture for visualization. In the final part, a perception-based method using CSF (contrast sensitivity function) is introduced to determine an appropriate LoD (level of detail) version of the model for a given viewing scenario (point of view and camera properties) at runtime.
KW - Building Models
KW - Curved
KW - Generalization
KW - Multi-Scale Representation of Spatial Data
KW - Roof
KW - Tiles
UR - http://www.scopus.com/inward/record.url?scp=84923645299&partnerID=8YFLogxK
M3 - Conference article
AN - SCOPUS:84923645299
VL - 38
SP - 39
EP - 44
JO - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives
JF - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives
SN - 1682-1750
T2 - Joint International Conference on Theory, Data Handling and Modelling in GeoSpatial Information Science
Y2 - 26 May 2010 through 28 May 2010
ER -