Gene expression analysis in apple roots on soils with replant disease

Publikation: Qualifikations-/StudienabschlussarbeitDissertation

Autoren

  • Annmarie-Deetja Rohr
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
QualifikationDoctor rerum naturalium
Gradverleihende Hochschule
Betreut von
Datum der Verleihung des Grades14 Dez. 2020
ErscheinungsortHannover
PublikationsstatusVeröffentlicht - 2021

Abstract

Die Apfelnachbaukrankheit (ARD) stellt ein weltweites, ernstzunehmendes ökonomisches Risiko für Baumschulen und Apfelproduzenten dar. ARD führt zu Wurzelschäden und vermindertem Sprosswachstum bei jungen Apfelbäumen, wenn sie an derselben Stelle wie dieselbe oder eine nahe verwandte Art nachgepflanzt werden. Dies führt zu Einbußen bei der Qualität der Bäume und Früchte sowie beim Ertrag. Bis jetzt gibt es keine praktikable und nachhaltige Gegenmaßnahme, doch ein besseres Verständnis der Rolle der Apfelpflanze kann zur Erarbeitung neuer Gegenmaßnahmen und Früherkennungsmethoden beitragen. In dieser Arbeit wurde die Reaktion von Apfelunterlagen auf ARD in Hinblick auf Expression von ARD-Indikatorgenen in Blatt- und Wurzelmaterial untersucht, um einen frühen und ARD-spezifischen transkriptionellen Marker für ARD zu identifizieren. Als erstes wurde die Expression eines Sets zuvor identifizierter Kandidatengene in zwei wachstumsbasierten Biotests untersucht. Der erste Test umfasste die Apfelgenotypen M26, M9, B63 und Malus × robusta MAL0595 mit unterschiedlicher ARD-Anfälligkeit, zwei ARD-Böden und ein Set aus 108 Kandidatengenen. Der zweite Test beinhaltete M26, drei ARD-Böden und sieben Kandidatengene. In diesen Experimenten wurde eine frühe Induktion der Phytoalexinbiosynthese unter ARD-Bedingungen gefunden. Zwei der involvierten Gene, biphenyl synthase 3 (BIS3) und biphe-nyl 4-hydroxylase b (B4Hb), sowie ethylene-responsive transcription factor 1B-like (ERF1B) wurden für die weitere Charakterisierung mittels verschiedener abiotischer Stressoren ausgewählt, bei der eine Antwort von ERF1B auf Hitzestress beobachtet wurde. BIS3 und B4Hb waren davon nicht betroffen. Alle drei Gene waren in signifikant geringerem Maße auch in gesundem Boden im Vergleich zu ARD exprimiert. Im zweiten Schritt wurde die Expression von BIS3, B4Hb und ERF1B in einem Split-Root-System untersucht, um das Wachstum der Pflanze gleichzeitig in gesundem und ARD-Boden nachzustellen. Die erhöhte Genexpression und Anreicherung spezifischer Phenole war auf Wurzeln in Kontakt mit ARD-Boden beschränkt, welche auch Verbräunungen und Wurzelschäden aufwiesen. Die Pflanzen glichen vermindertes Sprosswachstum teilweise aus, wenn eine Hälfte des Wurzelsystems in gesundem Boden wuchs. Diese lokale Antwort wurde in einem „Split-Column-System“ ohne physikalische Barrieren zwischen ARD- und Kontrollboden bestätigt. Wurzelsymp-tome, Genexpression und Phytoalexingehalte waren verknüpft mit einem engen Kontakt zwischen Wurzel und ARD-Boden. Die Abwehrreaktion aus erhöhten Biphenyl-, Dibenzofuran- und Phloridzingehalten sowie Gehalten weiterer aromatischer Verbindungen fand in weit geringerem Maße aber auch in gesundem Boden statt. Dies kann eine Rolle bei den Veränderungen des Bodenmikrobioms spielen, welche durch eine schrittweise Anreicherung spezialisierter Schadorganismen zu ARD führen. Die Immobilität von ARD ermöglicht es alten Bäumen, in noch nicht betroffene Bodenbereiche vorzudringen. Werden hingegen junge Bäume in diesen Boden gepflanzt, zeigt sich die ARD-typische drastische Wachstumsverminderung.

Zitieren

Gene expression analysis in apple roots on soils with replant disease. / Rohr, Annmarie-Deetja.
Hannover, 2021. 170 S.

Publikation: Qualifikations-/StudienabschlussarbeitDissertation

Rohr, A-D 2021, 'Gene expression analysis in apple roots on soils with replant disease', Doctor rerum naturalium, Gottfried Wilhelm Leibniz Universität Hannover, Hannover. https://doi.org/10.15488/10484
Rohr, A.-D. (2021). Gene expression analysis in apple roots on soils with replant disease. [Dissertation, Gottfried Wilhelm Leibniz Universität Hannover]. https://doi.org/10.15488/10484
Rohr AD. Gene expression analysis in apple roots on soils with replant disease. Hannover, 2021. 170 S. doi: 10.15488/10484
Rohr, Annmarie-Deetja. / Gene expression analysis in apple roots on soils with replant disease. Hannover, 2021. 170 S.
Download
@phdthesis{a029d1b7ade24b308241be38cf23262d,
title = "Gene expression analysis in apple roots on soils with replant disease",
abstract = "Apple replant disease (ARD) is a serious economic risk for tree nurseries and fruit growers world-wide. ARD causes root damage and stunting in young apple trees if replanted on a spot previously occupied by the same or closely-related species, which negatively impacts yield and quality of trees and fruits. No feasible and sustainable counteraction is available up to date but understanding the apple plant{\textquoteright}s role in this complex phenomenon can help in the development of novel reme-dies and the early diagnosis to aid risk assessment. In this thesis, the reaction of apple rootstock plants to ARD was investigated in terms of ARD indicator gene expression in root and leaf material to identify an early and universal transcriptional marker for ARD. Firstly, the expression of a set of previously identified candidate genes was investigated in two growth-based biotests with untreated and disinfected ARD soil. The first test included the apple genotypes M26, M9, B63 and Malus × robusta MAL0595 with differing ARD sensitivity, two ARD soils of different origin and a set of 108 candidate genes. The second test included M26, three ARD soils and seven candidate genes. These experiments revealed an early prominent induction of phytoalexin biosynthesis under ARD conditions. Two of the involved genes, biphenyl synthase 3 (BIS3) and biphenyl 4-hydroxylase b (B4Hb), as well as the ethylene-responsive transcription factor 1B-like (ERF1B) were chosen for further characterization by applying a set of abiotic stressors, which revealed a response of ERF1B to heat stress, while BIS3 and B4Hb were not affected. All three genes were induced by grass soil but to a significantly lower degree compared to ARD soil. In the second step, we analyzed BIS3, B4Hb and ERF1B expression in a split-root system to simulate the plant growing in ARD and non-ARD soil at the same time. Induction of gene expression and increase of specific phenolic compounds was present in roots growing in ARD soil, accompa-nied by the localized ARD symptoms of root discoloration and damage. Plants partly compensated shoot growth reduction if half of the root system was growing in healthy soil. The localized re-sponse was further confirmed in a split-column system without physical barriers between ARD and healthy soil, which indicated that ARD root symptoms, gene expression and phytoalexin con-tent depended on a direct or very close contact of ARD soil and the roots. The defense response of increased biphenyl, dibenzofuran, phloridzin and other aromatic com-pound contents was observed at significantly lower but detectable levels already in healthy soil. This may play a role in the shifts observed in rhizosphere and bulk soil microbial communities leading to ARD by a gradual enrichment in specialized detrimental communities. The immobile nature of ARD enables old trees to cope with this situation by growing into soil regions not yet affected by ARD. Young trees placed in this situation, however, suffer from severe growth depres-sion known as ARD.",
author = "Annmarie-Deetja Rohr",
note = "Doctoral thesis",
year = "2021",
doi = "10.15488/10484",
language = "English",
school = "Leibniz University Hannover",

}

Download

TY - BOOK

T1 - Gene expression analysis in apple roots on soils with replant disease

AU - Rohr, Annmarie-Deetja

N1 - Doctoral thesis

PY - 2021

Y1 - 2021

N2 - Apple replant disease (ARD) is a serious economic risk for tree nurseries and fruit growers world-wide. ARD causes root damage and stunting in young apple trees if replanted on a spot previously occupied by the same or closely-related species, which negatively impacts yield and quality of trees and fruits. No feasible and sustainable counteraction is available up to date but understanding the apple plant’s role in this complex phenomenon can help in the development of novel reme-dies and the early diagnosis to aid risk assessment. In this thesis, the reaction of apple rootstock plants to ARD was investigated in terms of ARD indicator gene expression in root and leaf material to identify an early and universal transcriptional marker for ARD. Firstly, the expression of a set of previously identified candidate genes was investigated in two growth-based biotests with untreated and disinfected ARD soil. The first test included the apple genotypes M26, M9, B63 and Malus × robusta MAL0595 with differing ARD sensitivity, two ARD soils of different origin and a set of 108 candidate genes. The second test included M26, three ARD soils and seven candidate genes. These experiments revealed an early prominent induction of phytoalexin biosynthesis under ARD conditions. Two of the involved genes, biphenyl synthase 3 (BIS3) and biphenyl 4-hydroxylase b (B4Hb), as well as the ethylene-responsive transcription factor 1B-like (ERF1B) were chosen for further characterization by applying a set of abiotic stressors, which revealed a response of ERF1B to heat stress, while BIS3 and B4Hb were not affected. All three genes were induced by grass soil but to a significantly lower degree compared to ARD soil. In the second step, we analyzed BIS3, B4Hb and ERF1B expression in a split-root system to simulate the plant growing in ARD and non-ARD soil at the same time. Induction of gene expression and increase of specific phenolic compounds was present in roots growing in ARD soil, accompa-nied by the localized ARD symptoms of root discoloration and damage. Plants partly compensated shoot growth reduction if half of the root system was growing in healthy soil. The localized re-sponse was further confirmed in a split-column system without physical barriers between ARD and healthy soil, which indicated that ARD root symptoms, gene expression and phytoalexin con-tent depended on a direct or very close contact of ARD soil and the roots. The defense response of increased biphenyl, dibenzofuran, phloridzin and other aromatic com-pound contents was observed at significantly lower but detectable levels already in healthy soil. This may play a role in the shifts observed in rhizosphere and bulk soil microbial communities leading to ARD by a gradual enrichment in specialized detrimental communities. The immobile nature of ARD enables old trees to cope with this situation by growing into soil regions not yet affected by ARD. Young trees placed in this situation, however, suffer from severe growth depres-sion known as ARD.

AB - Apple replant disease (ARD) is a serious economic risk for tree nurseries and fruit growers world-wide. ARD causes root damage and stunting in young apple trees if replanted on a spot previously occupied by the same or closely-related species, which negatively impacts yield and quality of trees and fruits. No feasible and sustainable counteraction is available up to date but understanding the apple plant’s role in this complex phenomenon can help in the development of novel reme-dies and the early diagnosis to aid risk assessment. In this thesis, the reaction of apple rootstock plants to ARD was investigated in terms of ARD indicator gene expression in root and leaf material to identify an early and universal transcriptional marker for ARD. Firstly, the expression of a set of previously identified candidate genes was investigated in two growth-based biotests with untreated and disinfected ARD soil. The first test included the apple genotypes M26, M9, B63 and Malus × robusta MAL0595 with differing ARD sensitivity, two ARD soils of different origin and a set of 108 candidate genes. The second test included M26, three ARD soils and seven candidate genes. These experiments revealed an early prominent induction of phytoalexin biosynthesis under ARD conditions. Two of the involved genes, biphenyl synthase 3 (BIS3) and biphenyl 4-hydroxylase b (B4Hb), as well as the ethylene-responsive transcription factor 1B-like (ERF1B) were chosen for further characterization by applying a set of abiotic stressors, which revealed a response of ERF1B to heat stress, while BIS3 and B4Hb were not affected. All three genes were induced by grass soil but to a significantly lower degree compared to ARD soil. In the second step, we analyzed BIS3, B4Hb and ERF1B expression in a split-root system to simulate the plant growing in ARD and non-ARD soil at the same time. Induction of gene expression and increase of specific phenolic compounds was present in roots growing in ARD soil, accompa-nied by the localized ARD symptoms of root discoloration and damage. Plants partly compensated shoot growth reduction if half of the root system was growing in healthy soil. The localized re-sponse was further confirmed in a split-column system without physical barriers between ARD and healthy soil, which indicated that ARD root symptoms, gene expression and phytoalexin con-tent depended on a direct or very close contact of ARD soil and the roots. The defense response of increased biphenyl, dibenzofuran, phloridzin and other aromatic com-pound contents was observed at significantly lower but detectable levels already in healthy soil. This may play a role in the shifts observed in rhizosphere and bulk soil microbial communities leading to ARD by a gradual enrichment in specialized detrimental communities. The immobile nature of ARD enables old trees to cope with this situation by growing into soil regions not yet affected by ARD. Young trees placed in this situation, however, suffer from severe growth depres-sion known as ARD.

U2 - 10.15488/10484

DO - 10.15488/10484

M3 - Doctoral thesis

CY - Hannover

ER -

Von denselben Autoren