Gaps in discrete random samples: extended abstract

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autorschaft

  • Rudolf Grübel
  • Paweł Hitczenko

Externe Organisationen

  • Drexel University
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)97-102
Seitenumfang6
FachzeitschriftElectronic Notes in Discrete Mathematics
Jahrgang35
AusgabenummerC
Frühes Online-Datum3 Dez. 2009
PublikationsstatusVeröffentlicht - Dez. 2009

Abstract

Motivated by applications in enumerative combinatorics and the analysis of algorithms we investigate the number of gaps and the length of the longest gap in a discrete random sample from a general distribution. We obtain necessary and sufficient conditions on the underlying distribution for the gaps to vanish asymptotically (with probability 1, or in probability), and we study the limiting distributional behavior of these random variables in the geometric case.

ASJC Scopus Sachgebiete

Zitieren

Gaps in discrete random samples: extended abstract. / Grübel, Rudolf; Hitczenko, Paweł.
in: Electronic Notes in Discrete Mathematics, Jahrgang 35, Nr. C, 12.2009, S. 97-102.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Grübel, R & Hitczenko, P 2009, 'Gaps in discrete random samples: extended abstract', Electronic Notes in Discrete Mathematics, Jg. 35, Nr. C, S. 97-102. https://doi.org/10.1016/j.endm.2009.11.017
Grübel, R., & Hitczenko, P. (2009). Gaps in discrete random samples: extended abstract. Electronic Notes in Discrete Mathematics, 35(C), 97-102. https://doi.org/10.1016/j.endm.2009.11.017
Grübel R, Hitczenko P. Gaps in discrete random samples: extended abstract. Electronic Notes in Discrete Mathematics. 2009 Dez;35(C):97-102. Epub 2009 Dez 3. doi: 10.1016/j.endm.2009.11.017
Grübel, Rudolf ; Hitczenko, Paweł. / Gaps in discrete random samples : extended abstract. in: Electronic Notes in Discrete Mathematics. 2009 ; Jahrgang 35, Nr. C. S. 97-102.
Download
@article{86d3a161cddc4fa591477c588b8be041,
title = "Gaps in discrete random samples: extended abstract",
abstract = "Motivated by applications in enumerative combinatorics and the analysis of algorithms we investigate the number of gaps and the length of the longest gap in a discrete random sample from a general distribution. We obtain necessary and sufficient conditions on the underlying distribution for the gaps to vanish asymptotically (with probability 1, or in probability), and we study the limiting distributional behavior of these random variables in the geometric case.",
keywords = "gaps, geometric distribution, random samples",
author = "Rudolf Gr{\"u}bel and Pawe{\l} Hitczenko",
year = "2009",
month = dec,
doi = "10.1016/j.endm.2009.11.017",
language = "English",
volume = "35",
pages = "97--102",
number = "C",

}

Download

TY - JOUR

T1 - Gaps in discrete random samples

T2 - extended abstract

AU - Grübel, Rudolf

AU - Hitczenko, Paweł

PY - 2009/12

Y1 - 2009/12

N2 - Motivated by applications in enumerative combinatorics and the analysis of algorithms we investigate the number of gaps and the length of the longest gap in a discrete random sample from a general distribution. We obtain necessary and sufficient conditions on the underlying distribution for the gaps to vanish asymptotically (with probability 1, or in probability), and we study the limiting distributional behavior of these random variables in the geometric case.

AB - Motivated by applications in enumerative combinatorics and the analysis of algorithms we investigate the number of gaps and the length of the longest gap in a discrete random sample from a general distribution. We obtain necessary and sufficient conditions on the underlying distribution for the gaps to vanish asymptotically (with probability 1, or in probability), and we study the limiting distributional behavior of these random variables in the geometric case.

KW - gaps

KW - geometric distribution

KW - random samples

UR - http://www.scopus.com/inward/record.url?scp=70949092935&partnerID=8YFLogxK

U2 - 10.1016/j.endm.2009.11.017

DO - 10.1016/j.endm.2009.11.017

M3 - Article

AN - SCOPUS:70949092935

VL - 35

SP - 97

EP - 102

JO - Electronic Notes in Discrete Mathematics

JF - Electronic Notes in Discrete Mathematics

SN - 1571-0653

IS - C

ER -