Details
Originalsprache | Englisch |
---|---|
Titel des Sammelwerks | Mordell–Weil Lattices |
Herausgeber (Verlag) | Springer Singapore |
Seiten | 191-228 |
Seitenumfang | 38 |
ISBN (elektronisch) | 978-981-32-9301-4 |
ISBN (Print) | 978-981-32-9300-7, 978-981-32-9303-8 |
Publikationsstatus | Veröffentlicht - 17 Okt. 2019 |
Publikationsreihe
Name | Ergebnisse der Mathematik und ihrer Grenzgebiete - 3. Folge / A Series of Modern Surveys in Mathematics |
---|---|
Band | 70 |
ISSN (Print) | 0071-1136 |
ISSN (elektronisch) | 2197-5655 |
Abstract
In this and the next chapter, we discuss Galois representations and algebraic equations which arise naturally from Mordell–Weil lattices. The notion of excellent families in the additive setting to describe a common deep connection between Mordell–Weil lattices of rational elliptic surfaces, algebraic equations and invariant theory of Weyl groups.
ASJC Scopus Sachgebiete
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
Mordell–Weil Lattices . Springer Singapore, 2019. S. 191-228 (Ergebnisse der Mathematik und ihrer Grenzgebiete - 3. Folge / A Series of Modern Surveys in Mathematics; Band 70).
Publikation: Beitrag in Buch/Bericht/Sammelwerk/Konferenzband › Beitrag in Buch/Sammelwerk › Forschung › Peer-Review
}
TY - CHAP
T1 - Galois Representations and Algebraic Equations
AU - Schütt, Matthias
AU - Shioda, Tetsuji
PY - 2019/10/17
Y1 - 2019/10/17
N2 - In this and the next chapter, we discuss Galois representations and algebraic equations which arise naturally from Mordell–Weil lattices. The notion of excellent families in the additive setting to describe a common deep connection between Mordell–Weil lattices of rational elliptic surfaces, algebraic equations and invariant theory of Weyl groups.
AB - In this and the next chapter, we discuss Galois representations and algebraic equations which arise naturally from Mordell–Weil lattices. The notion of excellent families in the additive setting to describe a common deep connection between Mordell–Weil lattices of rational elliptic surfaces, algebraic equations and invariant theory of Weyl groups.
UR - http://www.scopus.com/inward/record.url?scp=85074660986&partnerID=8YFLogxK
U2 - 10.1007/978-981-32-9301-4_9
DO - 10.1007/978-981-32-9301-4_9
M3 - Contribution to book/anthology
AN - SCOPUS:85074660986
SN - 978-981-32-9300-7
SN - 978-981-32-9303-8
T3 - Ergebnisse der Mathematik und ihrer Grenzgebiete - 3. Folge / A Series of Modern Surveys in Mathematics
SP - 191
EP - 228
BT - Mordell–Weil Lattices
PB - Springer Singapore
ER -