Galois Representations and Algebraic Equations

Publikation: Beitrag in Buch/Bericht/Sammelwerk/KonferenzbandBeitrag in Buch/SammelwerkForschungPeer-Review

Autoren

Organisationseinheiten

Externe Organisationen

  • Rikkyo University
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Titel des SammelwerksMordell–Weil Lattices
Herausgeber (Verlag)Springer Singapore
Seiten191-228
Seitenumfang38
ISBN (elektronisch)978-981-32-9301-4
ISBN (Print)978-981-32-9300-7, 978-981-32-9303-8
PublikationsstatusVeröffentlicht - 17 Okt. 2019

Publikationsreihe

NameErgebnisse der Mathematik und ihrer Grenzgebiete - 3. Folge / A Series of Modern Surveys in Mathematics
Band70
ISSN (Print)0071-1136
ISSN (elektronisch)2197-5655

Abstract

In this and the next chapter, we discuss Galois representations and algebraic equations which arise naturally from Mordell–Weil lattices. The notion of excellent families in the additive setting to describe a common deep connection between Mordell–Weil lattices of rational elliptic surfaces, algebraic equations and invariant theory of Weyl groups.

ASJC Scopus Sachgebiete

Zitieren

Galois Representations and Algebraic Equations. / Schütt, Matthias; Shioda, Tetsuji.
Mordell–Weil Lattices . Springer Singapore, 2019. S. 191-228 (Ergebnisse der Mathematik und ihrer Grenzgebiete - 3. Folge / A Series of Modern Surveys in Mathematics; Band 70).

Publikation: Beitrag in Buch/Bericht/Sammelwerk/KonferenzbandBeitrag in Buch/SammelwerkForschungPeer-Review

Schütt, M & Shioda, T 2019, Galois Representations and Algebraic Equations. in Mordell–Weil Lattices . Ergebnisse der Mathematik und ihrer Grenzgebiete - 3. Folge / A Series of Modern Surveys in Mathematics, Bd. 70, Springer Singapore, S. 191-228. https://doi.org/10.1007/978-981-32-9301-4_9
Schütt, M., & Shioda, T. (2019). Galois Representations and Algebraic Equations. In Mordell–Weil Lattices (S. 191-228). (Ergebnisse der Mathematik und ihrer Grenzgebiete - 3. Folge / A Series of Modern Surveys in Mathematics; Band 70). Springer Singapore. https://doi.org/10.1007/978-981-32-9301-4_9
Schütt M, Shioda T. Galois Representations and Algebraic Equations. in Mordell–Weil Lattices . Springer Singapore. 2019. S. 191-228. (Ergebnisse der Mathematik und ihrer Grenzgebiete - 3. Folge / A Series of Modern Surveys in Mathematics). doi: 10.1007/978-981-32-9301-4_9
Schütt, Matthias ; Shioda, Tetsuji. / Galois Representations and Algebraic Equations. Mordell–Weil Lattices . Springer Singapore, 2019. S. 191-228 (Ergebnisse der Mathematik und ihrer Grenzgebiete - 3. Folge / A Series of Modern Surveys in Mathematics).
Download
@inbook{6405beb31aa14750aeaf6c16c95fcda1,
title = "Galois Representations and Algebraic Equations",
abstract = "In this and the next chapter, we discuss Galois representations and algebraic equations which arise naturally from Mordell–Weil lattices. The notion of excellent families in the additive setting to describe a common deep connection between Mordell–Weil lattices of rational elliptic surfaces, algebraic equations and invariant theory of Weyl groups.",
author = "Matthias Sch{\"u}tt and Tetsuji Shioda",
year = "2019",
month = oct,
day = "17",
doi = "10.1007/978-981-32-9301-4_9",
language = "English",
isbn = "978-981-32-9300-7",
series = "Ergebnisse der Mathematik und ihrer Grenzgebiete - 3. Folge / A Series of Modern Surveys in Mathematics",
publisher = "Springer Singapore",
pages = "191--228",
booktitle = "Mordell–Weil Lattices",
address = "Singapore",

}

Download

TY - CHAP

T1 - Galois Representations and Algebraic Equations

AU - Schütt, Matthias

AU - Shioda, Tetsuji

PY - 2019/10/17

Y1 - 2019/10/17

N2 - In this and the next chapter, we discuss Galois representations and algebraic equations which arise naturally from Mordell–Weil lattices. The notion of excellent families in the additive setting to describe a common deep connection between Mordell–Weil lattices of rational elliptic surfaces, algebraic equations and invariant theory of Weyl groups.

AB - In this and the next chapter, we discuss Galois representations and algebraic equations which arise naturally from Mordell–Weil lattices. The notion of excellent families in the additive setting to describe a common deep connection between Mordell–Weil lattices of rational elliptic surfaces, algebraic equations and invariant theory of Weyl groups.

UR - http://www.scopus.com/inward/record.url?scp=85074660986&partnerID=8YFLogxK

U2 - 10.1007/978-981-32-9301-4_9

DO - 10.1007/978-981-32-9301-4_9

M3 - Contribution to book/anthology

AN - SCOPUS:85074660986

SN - 978-981-32-9300-7

SN - 978-981-32-9303-8

T3 - Ergebnisse der Mathematik und ihrer Grenzgebiete - 3. Folge / A Series of Modern Surveys in Mathematics

SP - 191

EP - 228

BT - Mordell–Weil Lattices

PB - Springer Singapore

ER -

Von denselben Autoren