Fusion systems on metacyclic 2-groups

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Benjamin Sambale

Externe Organisationen

  • Friedrich-Schiller-Universität Jena
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)325-329
Seitenumfang5
FachzeitschriftOsaka journal of mathematics
Jahrgang49
Ausgabenummer2
PublikationsstatusVeröffentlicht - Juni 2012
Extern publiziertJa

Abstract

Let P be a finite meta cyclic 2-group and F a fusion system on P. We prove that F is nilpotent unless P has maximal class or P is homo cyclic, i.e. P is a direct product of two isomorphic cyclic groups. As a consequence we obtain the numerical invariants for 2-blocks with meta cyclic defect groups. This paper is a part of the author's PhD thesis.

ASJC Scopus Sachgebiete

Zitieren

Fusion systems on metacyclic 2-groups. / Sambale, Benjamin.
in: Osaka journal of mathematics, Jahrgang 49, Nr. 2, 06.2012, S. 325-329.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Sambale, B 2012, 'Fusion systems on metacyclic 2-groups', Osaka journal of mathematics, Jg. 49, Nr. 2, S. 325-329.
Sambale, Benjamin. / Fusion systems on metacyclic 2-groups. in: Osaka journal of mathematics. 2012 ; Jahrgang 49, Nr. 2. S. 325-329.
Download
@article{2f80ec55148a4761b8df516f2be3cfc0,
title = "Fusion systems on metacyclic 2-groups",
abstract = "Let P be a finite meta cyclic 2-group and F a fusion system on P. We prove that F is nilpotent unless P has maximal class or P is homo cyclic, i.e. P is a direct product of two isomorphic cyclic groups. As a consequence we obtain the numerical invariants for 2-blocks with meta cyclic defect groups. This paper is a part of the author's PhD thesis.",
author = "Benjamin Sambale",
year = "2012",
month = jun,
language = "English",
volume = "49",
pages = "325--329",
journal = "Osaka journal of mathematics",
issn = "0030-6126",
publisher = "Osaka University",
number = "2",

}

Download

TY - JOUR

T1 - Fusion systems on metacyclic 2-groups

AU - Sambale, Benjamin

PY - 2012/6

Y1 - 2012/6

N2 - Let P be a finite meta cyclic 2-group and F a fusion system on P. We prove that F is nilpotent unless P has maximal class or P is homo cyclic, i.e. P is a direct product of two isomorphic cyclic groups. As a consequence we obtain the numerical invariants for 2-blocks with meta cyclic defect groups. This paper is a part of the author's PhD thesis.

AB - Let P be a finite meta cyclic 2-group and F a fusion system on P. We prove that F is nilpotent unless P has maximal class or P is homo cyclic, i.e. P is a direct product of two isomorphic cyclic groups. As a consequence we obtain the numerical invariants for 2-blocks with meta cyclic defect groups. This paper is a part of the author's PhD thesis.

UR - http://www.scopus.com/inward/record.url?scp=84863494806&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:84863494806

VL - 49

SP - 325

EP - 329

JO - Osaka journal of mathematics

JF - Osaka journal of mathematics

SN - 0030-6126

IS - 2

ER -