Fusion Systems on Bicyclic 2-Groups

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Benjamin Sambale

Externe Organisationen

  • Friedrich-Schiller-Universität Jena
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)989-1018
Seitenumfang30
FachzeitschriftProceedings of the Edinburgh Mathematical Society
Jahrgang59
Ausgabenummer4
PublikationsstatusVeröffentlicht - 1 Nov. 2016

Abstract

We classify all (saturated) fusion systems on bicyclic 2-groups. Here, a bicyclic group is a product of two cyclic subgroups. This extends previous work on fusion systems on metacyclic 2-groups. As an application we prove Olsson's conjecture for all blocks with bicyclic defect groups.

ASJC Scopus Sachgebiete

Zitieren

Fusion Systems on Bicyclic 2-Groups. / Sambale, Benjamin.
in: Proceedings of the Edinburgh Mathematical Society, Jahrgang 59, Nr. 4, 01.11.2016, S. 989-1018.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Sambale B. Fusion Systems on Bicyclic 2-Groups. Proceedings of the Edinburgh Mathematical Society. 2016 Nov 1;59(4):989-1018. doi: 10.1017/S0013091515000334
Sambale, Benjamin. / Fusion Systems on Bicyclic 2-Groups. in: Proceedings of the Edinburgh Mathematical Society. 2016 ; Jahrgang 59, Nr. 4. S. 989-1018.
Download
@article{c4c7814bbe384f28aedb4dc13791afb8,
title = "Fusion Systems on Bicyclic 2-Groups",
abstract = "We classify all (saturated) fusion systems on bicyclic 2-groups. Here, a bicyclic group is a product of two cyclic subgroups. This extends previous work on fusion systems on metacyclic 2-groups. As an application we prove Olsson's conjecture for all blocks with bicyclic defect groups.",
keywords = "bicyclic 2-groups, fusion systems, Olsson's conjecture",
author = "Benjamin Sambale",
note = "Publisher Copyright: {\textcopyright} 2016 Edinburgh Mathematical Society.",
year = "2016",
month = nov,
day = "1",
doi = "10.1017/S0013091515000334",
language = "English",
volume = "59",
pages = "989--1018",
journal = "Proceedings of the Edinburgh Mathematical Society",
issn = "0013-0915",
publisher = "Cambridge University Press",
number = "4",

}

Download

TY - JOUR

T1 - Fusion Systems on Bicyclic 2-Groups

AU - Sambale, Benjamin

N1 - Publisher Copyright: © 2016 Edinburgh Mathematical Society.

PY - 2016/11/1

Y1 - 2016/11/1

N2 - We classify all (saturated) fusion systems on bicyclic 2-groups. Here, a bicyclic group is a product of two cyclic subgroups. This extends previous work on fusion systems on metacyclic 2-groups. As an application we prove Olsson's conjecture for all blocks with bicyclic defect groups.

AB - We classify all (saturated) fusion systems on bicyclic 2-groups. Here, a bicyclic group is a product of two cyclic subgroups. This extends previous work on fusion systems on metacyclic 2-groups. As an application we prove Olsson's conjecture for all blocks with bicyclic defect groups.

KW - bicyclic 2-groups

KW - fusion systems

KW - Olsson's conjecture

UR - http://www.scopus.com/inward/record.url?scp=84953737269&partnerID=8YFLogxK

U2 - 10.1017/S0013091515000334

DO - 10.1017/S0013091515000334

M3 - Article

AN - SCOPUS:84953737269

VL - 59

SP - 989

EP - 1018

JO - Proceedings of the Edinburgh Mathematical Society

JF - Proceedings of the Edinburgh Mathematical Society

SN - 0013-0915

IS - 4

ER -