Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 989-1018 |
Seitenumfang | 30 |
Fachzeitschrift | Proceedings of the Edinburgh Mathematical Society |
Jahrgang | 59 |
Ausgabenummer | 4 |
Publikationsstatus | Veröffentlicht - 1 Nov. 2016 |
Abstract
We classify all (saturated) fusion systems on bicyclic 2-groups. Here, a bicyclic group is a product of two cyclic subgroups. This extends previous work on fusion systems on metacyclic 2-groups. As an application we prove Olsson's conjecture for all blocks with bicyclic defect groups.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Allgemeine Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Proceedings of the Edinburgh Mathematical Society, Jahrgang 59, Nr. 4, 01.11.2016, S. 989-1018.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Fusion Systems on Bicyclic 2-Groups
AU - Sambale, Benjamin
N1 - Publisher Copyright: © 2016 Edinburgh Mathematical Society.
PY - 2016/11/1
Y1 - 2016/11/1
N2 - We classify all (saturated) fusion systems on bicyclic 2-groups. Here, a bicyclic group is a product of two cyclic subgroups. This extends previous work on fusion systems on metacyclic 2-groups. As an application we prove Olsson's conjecture for all blocks with bicyclic defect groups.
AB - We classify all (saturated) fusion systems on bicyclic 2-groups. Here, a bicyclic group is a product of two cyclic subgroups. This extends previous work on fusion systems on metacyclic 2-groups. As an application we prove Olsson's conjecture for all blocks with bicyclic defect groups.
KW - bicyclic 2-groups
KW - fusion systems
KW - Olsson's conjecture
UR - http://www.scopus.com/inward/record.url?scp=84953737269&partnerID=8YFLogxK
U2 - 10.1017/S0013091515000334
DO - 10.1017/S0013091515000334
M3 - Article
AN - SCOPUS:84953737269
VL - 59
SP - 989
EP - 1018
JO - Proceedings of the Edinburgh Mathematical Society
JF - Proceedings of the Edinburgh Mathematical Society
SN - 0013-0915
IS - 4
ER -