Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 030 |
Seitenumfang | 47 |
Fachzeitschrift | SciPost Physics |
Jahrgang | 12 |
Ausgabenummer | 1 |
Publikationsstatus | Veröffentlicht - 20 Jan. 2022 |
Abstract
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: SciPost Physics, Jahrgang 12, Nr. 1, 030, 20.01.2022.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Fusion in the periodic Temperley-Lieb algebra and connectivity operators of loop models
AU - Ikhlef, Yacine
AU - Morin-Duchesne, Alexi
N1 - Publisher Copyright: © The Author(s), 2021.
PY - 2022/1/20
Y1 - 2022/1/20
N2 - In two-dimensional loop models, the scaling properties of critical random curves are encoded in the correlators of connectivity operators. In the dense O(\(n\)) loop model, any such operator is naturally associated to a standard module of the periodic Temperley-Lieb algebra. We introduce a new family of representations of this algebra, with connectivity states that have two marked points, and argue that they define the fusion of two standard modules. We obtain their decomposition on the standard modules for generic values of the parameters, which in turn yields the structure of the operator product expansion of connectivity operators.
AB - In two-dimensional loop models, the scaling properties of critical random curves are encoded in the correlators of connectivity operators. In the dense O(\(n\)) loop model, any such operator is naturally associated to a standard module of the periodic Temperley-Lieb algebra. We introduce a new family of representations of this algebra, with connectivity states that have two marked points, and argue that they define the fusion of two standard modules. We obtain their decomposition on the standard modules for generic values of the parameters, which in turn yields the structure of the operator product expansion of connectivity operators.
KW - math-ph
KW - cond-mat.stat-mech
KW - hep-th
KW - math.MP
UR - http://www.scopus.com/inward/record.url?scp=85124402313&partnerID=8YFLogxK
U2 - 10.21468/SciPostPhys.12.1.030
DO - 10.21468/SciPostPhys.12.1.030
M3 - Article
VL - 12
JO - SciPost Physics
JF - SciPost Physics
IS - 1
M1 - 030
ER -