Fusion algebras for imprimitive complex reflection groups

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

Externe Organisationen

  • Technische Universität Kaiserslautern
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)251-267
Seitenumfang17
FachzeitschriftJournal of algebra
Jahrgang311
Ausgabenummer1
PublikationsstatusVeröffentlicht - 1 Mai 2007
Extern publiziertJa

Abstract

We prove that the Fourier matrices for the imprimitive complex reflection groups introduced by Malle in [Gunter Malle, Unipotente Grade imprimitiver komplexer Spiegelungsgruppen, J. Algebra 177 (3) (1995) 768-826] define fusion algebras with not necessarily positive but integer structure constants. Hence they define Z-algebras. As a result, we obtain that all known Fourier matrices belonging to spetses define algebras with integer structure constants.

ASJC Scopus Sachgebiete

Zitieren

Fusion algebras for imprimitive complex reflection groups. / Cuntz, Michael.
in: Journal of algebra, Jahrgang 311, Nr. 1, 01.05.2007, S. 251-267.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Cuntz M. Fusion algebras for imprimitive complex reflection groups. Journal of algebra. 2007 Mai 1;311(1):251-267. doi: 10.1016/j.jalgebra.2006.10.027
Download
@article{47871ef4fed341ae94489c91e8a2433c,
title = "Fusion algebras for imprimitive complex reflection groups",
abstract = "We prove that the Fourier matrices for the imprimitive complex reflection groups introduced by Malle in [Gunter Malle, Unipotente Grade imprimitiver komplexer Spiegelungsgruppen, J. Algebra 177 (3) (1995) 768-826] define fusion algebras with not necessarily positive but integer structure constants. Hence they define Z-algebras. As a result, we obtain that all known Fourier matrices belonging to spetses define algebras with integer structure constants.",
keywords = "Complex reflection groups, Fourier matrix, Representation theory of finite groups, Table algebras",
author = "Michael Cuntz",
year = "2007",
month = may,
day = "1",
doi = "10.1016/j.jalgebra.2006.10.027",
language = "English",
volume = "311",
pages = "251--267",
journal = "Journal of algebra",
issn = "0021-8693",
publisher = "Academic Press Inc.",
number = "1",

}

Download

TY - JOUR

T1 - Fusion algebras for imprimitive complex reflection groups

AU - Cuntz, Michael

PY - 2007/5/1

Y1 - 2007/5/1

N2 - We prove that the Fourier matrices for the imprimitive complex reflection groups introduced by Malle in [Gunter Malle, Unipotente Grade imprimitiver komplexer Spiegelungsgruppen, J. Algebra 177 (3) (1995) 768-826] define fusion algebras with not necessarily positive but integer structure constants. Hence they define Z-algebras. As a result, we obtain that all known Fourier matrices belonging to spetses define algebras with integer structure constants.

AB - We prove that the Fourier matrices for the imprimitive complex reflection groups introduced by Malle in [Gunter Malle, Unipotente Grade imprimitiver komplexer Spiegelungsgruppen, J. Algebra 177 (3) (1995) 768-826] define fusion algebras with not necessarily positive but integer structure constants. Hence they define Z-algebras. As a result, we obtain that all known Fourier matrices belonging to spetses define algebras with integer structure constants.

KW - Complex reflection groups

KW - Fourier matrix

KW - Representation theory of finite groups

KW - Table algebras

UR - http://www.scopus.com/inward/record.url?scp=33947306427&partnerID=8YFLogxK

U2 - 10.1016/j.jalgebra.2006.10.027

DO - 10.1016/j.jalgebra.2006.10.027

M3 - Article

AN - SCOPUS:33947306427

VL - 311

SP - 251

EP - 267

JO - Journal of algebra

JF - Journal of algebra

SN - 0021-8693

IS - 1

ER -

Von denselben Autoren