Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 110030 |
Fachzeitschrift | Microporous and Mesoporous Materials |
Jahrgang | 297 |
Frühes Online-Datum | 16 Jan. 2020 |
Publikationsstatus | Veröffentlicht - 1 Mai 2020 |
Abstract
Membrane-based separation technology has evolved as a competitive approach for CO2 capture from flue gas (mainly N2). To achieve high separation performance, three partially NH2-, OH- and CH3OH- functionalized mixed-linker-ZIF-7 were successfully synthesized, and incorporated into polyether-block-amide (Pebax® 2533) polymer to form mixed-matrix membranes (MMMs). As evidenced by the CO2 adsorption isotherms, introducing functional groups in the ZIF-7 framework was indeed beneficial for CO2 adsorption. All MMMs composed of ZIF-7-NH2, ZIF-7-OH and ZIF-7-CH3OH offered better CO2/N2 separation performance than the parent ZIF-7-Pebax® 2533 membrane, suggesting the positive effect of functionalized ZIF-7 fillers on the gas separation performance. Among the three functionalized ZIF-7 based MMMs, the ZIF-7-OH-Pebax MMMs exhibited the best performance for CO2/N2 separation, which might be ascribed to the highest adsorption selectivity of CO2 over N2 predicted by ideal adsorbed solution theory (IAST) for ZIF-7-OH fillers. The 14% ZIF-7-OH-Pebax MMM showed high CO2 permeability of 273 Barrer and CO2/N2 separation factor of 38, which increased by 60% and 145% as compared with the neat Pebax membrane. The strategy of preparing functionalized MOFs with strong affinity for CO2 provides an effective method to develop MMMs for highly efficient CO2 separation.
ASJC Scopus Sachgebiete
- Chemie (insg.)
- Werkstoffwissenschaften (insg.)
- Physik und Astronomie (insg.)
- Physik der kondensierten Materie
- Ingenieurwesen (insg.)
- Werkstoffmechanik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Microporous and Mesoporous Materials, Jahrgang 297, 110030, 01.05.2020.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Functionalized ZIF-7/Pebax® 2533 mixed matrix membranes for CO2/N2 separation
AU - Gao, Jie
AU - Mao, Haizhuo
AU - Jin, Hua
AU - Chen, Chen
AU - Feldhoff, Armin
AU - Li, Yanshuo
N1 - Funding Information: This work was supported by the National Natural Science Foundation of China ( 21808113 , 21622607 , 21761132009 ), National Natural Science Foundation of Zhejiang (no. LR18B060002 ) and the K. C. Wong Magna Fund in Ningbo University. Gratefully acknowledged is funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - FE928/15-1 .
PY - 2020/5/1
Y1 - 2020/5/1
N2 - Membrane-based separation technology has evolved as a competitive approach for CO2 capture from flue gas (mainly N2). To achieve high separation performance, three partially NH2-, OH- and CH3OH- functionalized mixed-linker-ZIF-7 were successfully synthesized, and incorporated into polyether-block-amide (Pebax® 2533) polymer to form mixed-matrix membranes (MMMs). As evidenced by the CO2 adsorption isotherms, introducing functional groups in the ZIF-7 framework was indeed beneficial for CO2 adsorption. All MMMs composed of ZIF-7-NH2, ZIF-7-OH and ZIF-7-CH3OH offered better CO2/N2 separation performance than the parent ZIF-7-Pebax® 2533 membrane, suggesting the positive effect of functionalized ZIF-7 fillers on the gas separation performance. Among the three functionalized ZIF-7 based MMMs, the ZIF-7-OH-Pebax MMMs exhibited the best performance for CO2/N2 separation, which might be ascribed to the highest adsorption selectivity of CO2 over N2 predicted by ideal adsorbed solution theory (IAST) for ZIF-7-OH fillers. The 14% ZIF-7-OH-Pebax MMM showed high CO2 permeability of 273 Barrer and CO2/N2 separation factor of 38, which increased by 60% and 145% as compared with the neat Pebax membrane. The strategy of preparing functionalized MOFs with strong affinity for CO2 provides an effective method to develop MMMs for highly efficient CO2 separation.
AB - Membrane-based separation technology has evolved as a competitive approach for CO2 capture from flue gas (mainly N2). To achieve high separation performance, three partially NH2-, OH- and CH3OH- functionalized mixed-linker-ZIF-7 were successfully synthesized, and incorporated into polyether-block-amide (Pebax® 2533) polymer to form mixed-matrix membranes (MMMs). As evidenced by the CO2 adsorption isotherms, introducing functional groups in the ZIF-7 framework was indeed beneficial for CO2 adsorption. All MMMs composed of ZIF-7-NH2, ZIF-7-OH and ZIF-7-CH3OH offered better CO2/N2 separation performance than the parent ZIF-7-Pebax® 2533 membrane, suggesting the positive effect of functionalized ZIF-7 fillers on the gas separation performance. Among the three functionalized ZIF-7 based MMMs, the ZIF-7-OH-Pebax MMMs exhibited the best performance for CO2/N2 separation, which might be ascribed to the highest adsorption selectivity of CO2 over N2 predicted by ideal adsorbed solution theory (IAST) for ZIF-7-OH fillers. The 14% ZIF-7-OH-Pebax MMM showed high CO2 permeability of 273 Barrer and CO2/N2 separation factor of 38, which increased by 60% and 145% as compared with the neat Pebax membrane. The strategy of preparing functionalized MOFs with strong affinity for CO2 provides an effective method to develop MMMs for highly efficient CO2 separation.
KW - CO separation
KW - Functionalized ZIF-7
KW - Metal-organic framework
KW - Mixed-matrix membranes
KW - Pebax
UR - http://www.scopus.com/inward/record.url?scp=85078682358&partnerID=8YFLogxK
U2 - 10.1016/j.micromeso.2020.110030
DO - 10.1016/j.micromeso.2020.110030
M3 - Article
AN - SCOPUS:85078682358
VL - 297
JO - Microporous and Mesoporous Materials
JF - Microporous and Mesoporous Materials
SN - 1387-1811
M1 - 110030
ER -