Loading [MathJax]/extensions/tex2jax.js

Functional Control of Photosynthetic Nitrogen in Heterogeneous Plant Canopies

Publikation: Qualifikations-/StudienabschlussarbeitDissertation

Autorschaft

  • Yi-Chen Pao

Details

OriginalspracheEnglisch
QualifikationDoctor rerum horticulturarum
Gradverleihende Hochschule
Betreut von
  • Hartmut Stützel, Betreuer*in
Datum der Verleihung des Grades23 Sept. 2021
ErscheinungsortHannover
PublikationsstatusVeröffentlicht - 2021

Abstract

Die Akklimatisierung der photosynthetischen Eigenschaften der Blätter an schwankende Umgebungen ist ein Schlüsselmechanismus zur Maximierung der Fitness der Pflanze. Die Wahrnehmung der Lichtumgebung ist entscheidend für Arten mit kontinuierlicher Blattbildung, wie z. B. die Gewächshausgurke (Cucumis sativus L.). Um die Akklimatisierungsdynamik zu erfassen, wird angenommen, dass die Lichtinterzeption und die Ontogenese des Blattes die Akklimatisierungsprozesse prägen. Durch die Stickstoffinvestition in die Lichtaufnahme- und Lichtnutzungsfunktionen wird der ratenlimitierende Schritt in der photosynthetischen Maschinerie bestimmt. Basierend auf diesem Konzept wurde ein dynamisches Modell des Proteinumsatzes (Synthese und Abbau) implementiert. Die Stickstoffinvestition in drei photosynthetisch funktionelle Pools wurde in Abhängigkeit von Licht, Stickstoffversorgung und Blattalter simuliert mittels eines 1D-Lichtmodells (Multilayer-Modell, MLM) und eines 3D-Lichtmodells (funktionell-strukturelles Modell, FSM). Mit der Lichtabhängigkeit der Proteinsynthese war die photosynthetische Akklimatisationsreaktion auf schwankendes Licht zu erklären und die Bestandesphotosynthese mit vergleichbarer Genauigkeit sowohl mit dem MLM als auch dem FSM vorherzusagen. Unter Verwendung des MLM wurde die Optimalität der photosynthetischen Stickstoffnutzung zur Maximierung der täglichen Bestandesphotosynthese durch Manipulation der Proteinsyntheseraten quantifiziert. Die photosynthetische Stickstoffverteilung zwischen den Blättern erwies sich bei der Gewächshaussorte „Aramon“ als optimal, mit der Ausnahme, dass die Bestandesphotosynthese durch eine verstärkte akropetale Reallokation unter stickstofflimitierenden Bedingungen verbessert werden konnte. Die photosynthetische Stickstoffpartitionierung innerhalb des einzelnen Blattes war für die Sorte „Aramon“ optimal, aber nicht für die Freilandsorte „SC-50“, wenn sie in einer Einzelstammstruktur angebaut wurde, was wahrscheinlich auf die während der Züchtung entwickelte Koordination von Funktion und Struktur zurückzuführen ist. Im Gegensatz zu „Aramon“ hat „SC-50“ weniger photosynthetischen Gesamtstickstoff, doch dafür eine lichtempfindlichere Partitionierungsstrategie. Der vorgeschlagene Modellierungsrahmen liefert eine Interpretation für Akklimatisierungsmechanismen unter schwankendem Licht und ermöglicht In-silico-Manipulationen und -Tests der photosynthetischen Akklimatisierung in heterogenen Pflanzenbeständen. Mögliche Erweiterungen des Modellierungsrahmens werden diskutiert.

Zitieren

Functional Control of Photosynthetic Nitrogen in Heterogeneous Plant Canopies. / Pao, Yi-Chen.
Hannover, 2021. 177 S.

Publikation: Qualifikations-/StudienabschlussarbeitDissertation

Pao, Y-C 2021, 'Functional Control of Photosynthetic Nitrogen in Heterogeneous Plant Canopies', Doctor rerum horticulturarum, Gottfried Wilhelm Leibniz Universität Hannover, Hannover. https://doi.org/10.15488/11344
Pao, Y.-C. (2021). Functional Control of Photosynthetic Nitrogen in Heterogeneous Plant Canopies. [Dissertation, Gottfried Wilhelm Leibniz Universität Hannover]. https://doi.org/10.15488/11344
Pao YC. Functional Control of Photosynthetic Nitrogen in Heterogeneous Plant Canopies. Hannover, 2021. 177 S. doi: 10.15488/11344
Download
@phdthesis{0ef8c4f790c74aaba85d4e4cc2f1fca7,
title = "Functional Control of Photosynthetic Nitrogen in Heterogeneous Plant Canopies",
abstract = "Acclimation of leaf photosynthetic traits to fluctuating environments is a key mechanism to maximize fitness. Constant tracking of light environments is crucial for species with continuously leaf-forming nature, such as greenhouse cucumber (Cucumis sativus L.). To capture the acclimation dynamics, we propose that light interception and leaf ontogeny shape the acclimation processes through nitrogen investment in light capture and utilization functions, which determines the rate-limiting step in the photosynthetic machinery. Based on this concept, a dynamic model of protein turnover (synthesis and degradation) was implemented to simulate nitrogen investment in three photosynthetically functional pools depending on light, nitrogen supply and leaf age, in conjunction with a 1D light model using multilayer model (MLM) and a 3D light model using a functional-structural model (FSM). The light dependency of protein synthesis was able to explain the photosynthetic acclimatory response to fluctuating light, and to predict canopy photosynthesis with comparable accurracy using either the MLM or the FSM. Using the MLM, the degree of optimality of photosynthetic nitrogen use for maximizing daily canopy photosynthesis was quantified by manipulating the protein synthesis rates. Photosynthetic nitrogen distribution between leaves was found optimal in the greenhouse cultivar Aramon, except that canopy photosynthesis could be improved by enhanced acropetal reallocation under nitrogen-limiting conditions. Photosynthetic nitrogen partitioning within induvidual leaves was optimal for the cultivar Aramon but not for the field cultivar SC-50 when grown in a single-stem structure, probably due to the coordination of function with structure developed during breeding. In contrast to Aramon, SC-50 has less total photosynthetic nitrogen but a partitioning strategy more sensitive to light. The proposed modelling framework provides an interpretation for acclimatory mechanisms under fluctuating light, and enables in silico manipulations and tests of photosynthetic acclimation in heterogeneous canopies. Possible extensions to the framework are also discussed.",
author = "Yi-Chen Pao",
note = "Doctoral thesis",
year = "2021",
doi = "10.15488/11344",
language = "English",
school = "Leibniz University Hannover",

}

Download

TY - BOOK

T1 - Functional Control of Photosynthetic Nitrogen in Heterogeneous Plant Canopies

AU - Pao, Yi-Chen

N1 - Doctoral thesis

PY - 2021

Y1 - 2021

N2 - Acclimation of leaf photosynthetic traits to fluctuating environments is a key mechanism to maximize fitness. Constant tracking of light environments is crucial for species with continuously leaf-forming nature, such as greenhouse cucumber (Cucumis sativus L.). To capture the acclimation dynamics, we propose that light interception and leaf ontogeny shape the acclimation processes through nitrogen investment in light capture and utilization functions, which determines the rate-limiting step in the photosynthetic machinery. Based on this concept, a dynamic model of protein turnover (synthesis and degradation) was implemented to simulate nitrogen investment in three photosynthetically functional pools depending on light, nitrogen supply and leaf age, in conjunction with a 1D light model using multilayer model (MLM) and a 3D light model using a functional-structural model (FSM). The light dependency of protein synthesis was able to explain the photosynthetic acclimatory response to fluctuating light, and to predict canopy photosynthesis with comparable accurracy using either the MLM or the FSM. Using the MLM, the degree of optimality of photosynthetic nitrogen use for maximizing daily canopy photosynthesis was quantified by manipulating the protein synthesis rates. Photosynthetic nitrogen distribution between leaves was found optimal in the greenhouse cultivar Aramon, except that canopy photosynthesis could be improved by enhanced acropetal reallocation under nitrogen-limiting conditions. Photosynthetic nitrogen partitioning within induvidual leaves was optimal for the cultivar Aramon but not for the field cultivar SC-50 when grown in a single-stem structure, probably due to the coordination of function with structure developed during breeding. In contrast to Aramon, SC-50 has less total photosynthetic nitrogen but a partitioning strategy more sensitive to light. The proposed modelling framework provides an interpretation for acclimatory mechanisms under fluctuating light, and enables in silico manipulations and tests of photosynthetic acclimation in heterogeneous canopies. Possible extensions to the framework are also discussed.

AB - Acclimation of leaf photosynthetic traits to fluctuating environments is a key mechanism to maximize fitness. Constant tracking of light environments is crucial for species with continuously leaf-forming nature, such as greenhouse cucumber (Cucumis sativus L.). To capture the acclimation dynamics, we propose that light interception and leaf ontogeny shape the acclimation processes through nitrogen investment in light capture and utilization functions, which determines the rate-limiting step in the photosynthetic machinery. Based on this concept, a dynamic model of protein turnover (synthesis and degradation) was implemented to simulate nitrogen investment in three photosynthetically functional pools depending on light, nitrogen supply and leaf age, in conjunction with a 1D light model using multilayer model (MLM) and a 3D light model using a functional-structural model (FSM). The light dependency of protein synthesis was able to explain the photosynthetic acclimatory response to fluctuating light, and to predict canopy photosynthesis with comparable accurracy using either the MLM or the FSM. Using the MLM, the degree of optimality of photosynthetic nitrogen use for maximizing daily canopy photosynthesis was quantified by manipulating the protein synthesis rates. Photosynthetic nitrogen distribution between leaves was found optimal in the greenhouse cultivar Aramon, except that canopy photosynthesis could be improved by enhanced acropetal reallocation under nitrogen-limiting conditions. Photosynthetic nitrogen partitioning within induvidual leaves was optimal for the cultivar Aramon but not for the field cultivar SC-50 when grown in a single-stem structure, probably due to the coordination of function with structure developed during breeding. In contrast to Aramon, SC-50 has less total photosynthetic nitrogen but a partitioning strategy more sensitive to light. The proposed modelling framework provides an interpretation for acclimatory mechanisms under fluctuating light, and enables in silico manipulations and tests of photosynthetic acclimation in heterogeneous canopies. Possible extensions to the framework are also discussed.

U2 - 10.15488/11344

DO - 10.15488/11344

M3 - Doctoral thesis

CY - Hannover

ER -