Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 701-706 |
Seitenumfang | 6 |
Fachzeitschrift | Physics of Particles and Nuclei Letters |
Jahrgang | 17 |
Ausgabenummer | 5 |
Publikationsstatus | Veröffentlicht - Sept. 2020 |
Abstract
We review analytic SU(2) Yang–Mills solutions with finite action on four-dimensional de Sitter space from a new perspective, by conformally mapping dS4 to a finite Lorentzian cylinder(0,π)XS3 . As a byproduct, all abelian (i.e. Maxwell) solutions are classified by SO(4) representations. Conformal equivalence of (two copies of half of) this cylinder to Minkowski space yields a complete set of rational Maxwell solutions on the latter, which are known as electromagnetic knots. Their properties are efficiently computed on de Sitter space. We close with a couple of explicit examples.
ASJC Scopus Sachgebiete
- Physik und Astronomie (insg.)
- Strahlung
- Physik und Astronomie (insg.)
- Atom- und Molekularphysik sowie Optik
- Physik und Astronomie (insg.)
- Kern- und Hochenergiephysik
- Medizin (insg.)
- Radiologie, Nuklearmedizin und Bildgebung
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Physics of Particles and Nuclei Letters, Jahrgang 17, Nr. 5, 09.2020, S. 701-706.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - From Yang–Mills in de Sitter Space to Electromagnetic Knots
AU - Lechtenfeld, O.
PY - 2020/9
Y1 - 2020/9
N2 - We review analytic SU(2) Yang–Mills solutions with finite action on four-dimensional de Sitter space from a new perspective, by conformally mapping dS4 to a finite Lorentzian cylinder(0,π)XS3 . As a byproduct, all abelian (i.e. Maxwell) solutions are classified by SO(4) representations. Conformal equivalence of (two copies of half of) this cylinder to Minkowski space yields a complete set of rational Maxwell solutions on the latter, which are known as electromagnetic knots. Their properties are efficiently computed on de Sitter space. We close with a couple of explicit examples.
AB - We review analytic SU(2) Yang–Mills solutions with finite action on four-dimensional de Sitter space from a new perspective, by conformally mapping dS4 to a finite Lorentzian cylinder(0,π)XS3 . As a byproduct, all abelian (i.e. Maxwell) solutions are classified by SO(4) representations. Conformal equivalence of (two copies of half of) this cylinder to Minkowski space yields a complete set of rational Maxwell solutions on the latter, which are known as electromagnetic knots. Their properties are efficiently computed on de Sitter space. We close with a couple of explicit examples.
UR - http://www.scopus.com/inward/record.url?scp=85092194915&partnerID=8YFLogxK
U2 - 10.1134/s1547477120050246
DO - 10.1134/s1547477120050246
M3 - Article
AN - SCOPUS:85092194915
VL - 17
SP - 701
EP - 706
JO - Physics of Particles and Nuclei Letters
JF - Physics of Particles and Nuclei Letters
SN - 1547-4771
IS - 5
ER -