Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 021020 |
Fachzeitschrift | Physical Review X |
Jahrgang | 13 |
Ausgabenummer | 2 |
Publikationsstatus | Veröffentlicht - 5 Mai 2023 |
Abstract
We present the first atlas of the continuous gravitational wave sky, produced using LIGO O3a public data. For each 0.045 Hz frequency band and every point on the sky the atlas provides gravitational wave amplitude upper limits, signal-to-noise ratios (SNRs), and frequencies where the search measures the maximum SNR. The approximately top 1.5% of the atlas results are reanalyzed with a series of more sensitive searches with the purpose of finding high SNR long coherence signals from isolated neutron stars. However, these searches do not reveal the presence of such signals. The results presented in the atlas are produced with the Falcon pipeline and cover nearly monochromatic gravitational-wave signals in the 500-1000 Hz band, with up to ±5×10-11 Hz/s frequency derivative. The Falcon pipeline computes loosely coherent power estimates to search data using a succession of coherence lengths. For this search we use six months of data, started with a 12 hour coherence length and progress to six days. Compared to the most sensitive results previously published (also produced with the Falcon pipeline), our upper limits are 50% more constraining. Neutron stars with ellipticity of 10-8 can be detected up to 150 pc away, while allowing for a large fraction of the stars' energy to be lost through nongravitational channels. These results are within an order of magnitude of the minimum neutron star ellipticity of 10-9 suggested by Woan et al. [Astrophys. J. Lett. 863, L40 (2018)AJLEEY2041-821310.3847/2041-8213/aad86a.
ASJC Scopus Sachgebiete
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Physical Review X, Jahrgang 13, Nr. 2, 021020, 05.05.2023.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Frequency-Resolved Atlas of the Sky in Continuous Gravitational Waves
AU - Dergachev, Vladimir
AU - Papa, Maria Alessandra
PY - 2023/5/5
Y1 - 2023/5/5
N2 - We present the first atlas of the continuous gravitational wave sky, produced using LIGO O3a public data. For each 0.045 Hz frequency band and every point on the sky the atlas provides gravitational wave amplitude upper limits, signal-to-noise ratios (SNRs), and frequencies where the search measures the maximum SNR. The approximately top 1.5% of the atlas results are reanalyzed with a series of more sensitive searches with the purpose of finding high SNR long coherence signals from isolated neutron stars. However, these searches do not reveal the presence of such signals. The results presented in the atlas are produced with the Falcon pipeline and cover nearly monochromatic gravitational-wave signals in the 500-1000 Hz band, with up to ±5×10-11 Hz/s frequency derivative. The Falcon pipeline computes loosely coherent power estimates to search data using a succession of coherence lengths. For this search we use six months of data, started with a 12 hour coherence length and progress to six days. Compared to the most sensitive results previously published (also produced with the Falcon pipeline), our upper limits are 50% more constraining. Neutron stars with ellipticity of 10-8 can be detected up to 150 pc away, while allowing for a large fraction of the stars' energy to be lost through nongravitational channels. These results are within an order of magnitude of the minimum neutron star ellipticity of 10-9 suggested by Woan et al. [Astrophys. J. Lett. 863, L40 (2018)AJLEEY2041-821310.3847/2041-8213/aad86a.
AB - We present the first atlas of the continuous gravitational wave sky, produced using LIGO O3a public data. For each 0.045 Hz frequency band and every point on the sky the atlas provides gravitational wave amplitude upper limits, signal-to-noise ratios (SNRs), and frequencies where the search measures the maximum SNR. The approximately top 1.5% of the atlas results are reanalyzed with a series of more sensitive searches with the purpose of finding high SNR long coherence signals from isolated neutron stars. However, these searches do not reveal the presence of such signals. The results presented in the atlas are produced with the Falcon pipeline and cover nearly monochromatic gravitational-wave signals in the 500-1000 Hz band, with up to ±5×10-11 Hz/s frequency derivative. The Falcon pipeline computes loosely coherent power estimates to search data using a succession of coherence lengths. For this search we use six months of data, started with a 12 hour coherence length and progress to six days. Compared to the most sensitive results previously published (also produced with the Falcon pipeline), our upper limits are 50% more constraining. Neutron stars with ellipticity of 10-8 can be detected up to 150 pc away, while allowing for a large fraction of the stars' energy to be lost through nongravitational channels. These results are within an order of magnitude of the minimum neutron star ellipticity of 10-9 suggested by Woan et al. [Astrophys. J. Lett. 863, L40 (2018)AJLEEY2041-821310.3847/2041-8213/aad86a.
UR - http://www.scopus.com/inward/record.url?scp=85163015120&partnerID=8YFLogxK
U2 - 10.1103/PhysRevX.13.021020
DO - 10.1103/PhysRevX.13.021020
M3 - Article
AN - SCOPUS:85163015120
VL - 13
JO - Physical Review X
JF - Physical Review X
SN - 2160-3308
IS - 2
M1 - 021020
ER -