Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 375-403 |
Seitenumfang | 29 |
Fachzeitschrift | Complex Analysis and Operator Theory |
Jahrgang | 13 |
Ausgabenummer | 2 |
Frühes Online-Datum | 19 Mai 2018 |
Publikationsstatus | Veröffentlicht - 13 März 2019 |
Abstract
The Fredholm property of Toeplitz operators on the p-Fock spaces Fαp on C n is studied. A general Fredholm criterion for arbitrary operators from the Toeplitz algebra T p , α on Fαp in terms of the invertibility of limit operators is derived. This paper is based on previous work, which establishes corresponding results on the unit balls B n (Hagger in Integr Equ Oper Theory 89(4):519–556, 2017).
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Computational Mathematics
- Informatik (insg.)
- Theoretische Informatik und Mathematik
- Mathematik (insg.)
- Angewandte Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Complex Analysis and Operator Theory, Jahrgang 13, Nr. 2, 13.03.2019, S. 375-403.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Fredholmness of Toeplitz Operators on the Fock Space
AU - Fulsche, Robert
AU - Hagger, Raffael
PY - 2019/3/13
Y1 - 2019/3/13
N2 - The Fredholm property of Toeplitz operators on the p-Fock spaces Fαp on C n is studied. A general Fredholm criterion for arbitrary operators from the Toeplitz algebra T p , α on Fαp in terms of the invertibility of limit operators is derived. This paper is based on previous work, which establishes corresponding results on the unit balls B n (Hagger in Integr Equ Oper Theory 89(4):519–556, 2017).
AB - The Fredholm property of Toeplitz operators on the p-Fock spaces Fαp on C n is studied. A general Fredholm criterion for arbitrary operators from the Toeplitz algebra T p , α on Fαp in terms of the invertibility of limit operators is derived. This paper is based on previous work, which establishes corresponding results on the unit balls B n (Hagger in Integr Equ Oper Theory 89(4):519–556, 2017).
KW - Essential spectrum
KW - Fock spaces
KW - Limit operators
KW - Toeplitz operators
U2 - 10.48550/arXiv.1709.01457
DO - 10.48550/arXiv.1709.01457
M3 - Article
AN - SCOPUS:85047152406
VL - 13
SP - 375
EP - 403
JO - Complex Analysis and Operator Theory
JF - Complex Analysis and Operator Theory
SN - 1661-8254
IS - 2
ER -