Fredholm conditions for operators invariant with respect to compact Lie group actions

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Alexandre Baldare
  • Rémi Côme
  • Victor Nistor

Organisationseinheiten

Externe Organisationen

  • Université de Lorraine (UL)
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)1135-1143
Seitenumfang9
FachzeitschriftComptes rendus mathematique
Jahrgang359
Ausgabenummer9
PublikationsstatusVeröffentlicht - 3 Nov. 2021

Abstract

Let G be a compact Lie group acting smoothly on a smooth, compact manifold M, let P ∈ ψm(M;E0,E1) be a G–invariant, classical pseudodifferential operator acting between sections of two G-equivariant vector bundles Ei → M, i = 0,1, and let α be an irreducible representation of the group G. Then P induces a map πα(P): Hs(M;E0)α → Hsm(M;E1)α between the α-isotypical components. We prove that the map πα(P) is Fredholm if, and only if, P is transversally α-elliptic, a condition defined in terms of the principal symbol of P and the action of G on the vector bundles Ei

ASJC Scopus Sachgebiete

Zitieren

Fredholm conditions for operators invariant with respect to compact Lie group actions. / Baldare, Alexandre; Côme, Rémi; Nistor, Victor.
in: Comptes rendus mathematique, Jahrgang 359, Nr. 9, 03.11.2021, S. 1135-1143.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Baldare A, Côme R, Nistor V. Fredholm conditions for operators invariant with respect to compact Lie group actions. Comptes rendus mathematique. 2021 Nov 3;359(9):1135-1143. doi: 10.48550/arXiv.2012.03944, 10.5802/crmath.257
Baldare, Alexandre ; Côme, Rémi ; Nistor, Victor. / Fredholm conditions for operators invariant with respect to compact Lie group actions. in: Comptes rendus mathematique. 2021 ; Jahrgang 359, Nr. 9. S. 1135-1143.
Download
@article{e092a80801234d288ac956377ddbde8f,
title = "Fredholm conditions for operators invariant with respect to compact Lie group actions",
abstract = "Let G be a compact Lie group acting smoothly on a smooth, compact manifold M, let P ∈ ψm(M;E0,E1) be a G–invariant, classical pseudodifferential operator acting between sections of two G-equivariant vector bundles Ei → M, i = 0,1, and let α be an irreducible representation of the group G. Then P induces a map πα(P): Hs(M;E0)α → Hs−m(M;E1)α between the α-isotypical components. We prove that the map πα(P) is Fredholm if, and only if, P is transversally α-elliptic, a condition defined in terms of the principal symbol of P and the action of G on the vector bundles Ei",
author = "Alexandre Baldare and R{\'e}mi C{\^o}me and Victor Nistor",
note = "Funding Information: 2020 Mathematics Subject Classification. 47A53, 58J40, 57S15, 47L80, 46N20. Funding. A.B., R.C., and V.N. have been partially supported by ANR-14-CE25-0012-01 (SINGSTAR) . Manuscript received 7th December 2020, revised 25th March 2021 and 8th July 2021, accepted 10th August 2021. ",
year = "2021",
month = nov,
day = "3",
doi = "10.48550/arXiv.2012.03944",
language = "English",
volume = "359",
pages = "1135--1143",
journal = "Comptes rendus mathematique",
issn = "1631-073X",
publisher = "Elsevier Masson",
number = "9",

}

Download

TY - JOUR

T1 - Fredholm conditions for operators invariant with respect to compact Lie group actions

AU - Baldare, Alexandre

AU - Côme, Rémi

AU - Nistor, Victor

N1 - Funding Information: 2020 Mathematics Subject Classification. 47A53, 58J40, 57S15, 47L80, 46N20. Funding. A.B., R.C., and V.N. have been partially supported by ANR-14-CE25-0012-01 (SINGSTAR) . Manuscript received 7th December 2020, revised 25th March 2021 and 8th July 2021, accepted 10th August 2021.

PY - 2021/11/3

Y1 - 2021/11/3

N2 - Let G be a compact Lie group acting smoothly on a smooth, compact manifold M, let P ∈ ψm(M;E0,E1) be a G–invariant, classical pseudodifferential operator acting between sections of two G-equivariant vector bundles Ei → M, i = 0,1, and let α be an irreducible representation of the group G. Then P induces a map πα(P): Hs(M;E0)α → Hs−m(M;E1)α between the α-isotypical components. We prove that the map πα(P) is Fredholm if, and only if, P is transversally α-elliptic, a condition defined in terms of the principal symbol of P and the action of G on the vector bundles Ei

AB - Let G be a compact Lie group acting smoothly on a smooth, compact manifold M, let P ∈ ψm(M;E0,E1) be a G–invariant, classical pseudodifferential operator acting between sections of two G-equivariant vector bundles Ei → M, i = 0,1, and let α be an irreducible representation of the group G. Then P induces a map πα(P): Hs(M;E0)α → Hs−m(M;E1)α between the α-isotypical components. We prove that the map πα(P) is Fredholm if, and only if, P is transversally α-elliptic, a condition defined in terms of the principal symbol of P and the action of G on the vector bundles Ei

UR - http://www.scopus.com/inward/record.url?scp=85119906611&partnerID=8YFLogxK

U2 - 10.48550/arXiv.2012.03944

DO - 10.48550/arXiv.2012.03944

M3 - Article

AN - SCOPUS:85119906611

VL - 359

SP - 1135

EP - 1143

JO - Comptes rendus mathematique

JF - Comptes rendus mathematique

SN - 1631-073X

IS - 9

ER -