Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 5437 |
Fachzeitschrift | Scientific Reports |
Jahrgang | 9 |
Ausgabenummer | 1 |
Frühes Online-Datum | 1 Apr. 2019 |
Publikationsstatus | Elektronisch veröffentlicht (E-Pub) - 1 Apr. 2019 |
Abstract
Implementation of tubular endothelial cell networks is a prerequisite for 3D tissue engineering of constructs with clinically relevant size as nourishment of cells is challenged by the diffusion limit. In vitro generation of 3D networks is often achieved under conditions using serum containing cell culture medium and/or animal derived matrices. Here, 3D endothelial cell networks were generated by using human umbilical vein endothelial cells (HUVECs) in combination with human adipose tissue derived stromal cells (hASCs) employing human collagen I as hydrogel and decellularized porcine small intestinal submucosa as starter matrix. Matrigel/rat tail collagen I hydrogel was used as control. Resulting constructs were cultivated either in serum-free medium or in endothelial growth medium-2 serving as control. Endothelial cell networks were quantified, tested for lumen formation, and interaction of HUVECs and hASCs. Tube diameter was slightly larger in constructs containing human collagen I compared to Matrigel/rat tail collagen I constructs under serum-free conditions. All other network parameters were mostly similar. Thereby, the feasibility of generating 3D endothelial cell networks under serum-free culture conditions in human collagen I as hydrogel was demonstrated. In summary, the presented achievements pave the way for the generation of clinical applicable constructs.
ASJC Scopus Sachgebiete
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Scientific Reports, Jahrgang 9, Nr. 1, 5437, 01.04.2019.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Formation of three-dimensional tubular endothelial cell networks under defined serum-free cell culture conditions in human collagen hydrogels
AU - Andrée, Birgit
AU - Ichanti, Houda
AU - Kalies, Stefan
AU - Heisterkamp, Alexander
AU - Strauß, Sarah
AU - Vogt, Peter Maria
AU - Haverich, Axel
AU - Hilfiker, Andres
N1 - Funding information: The authors would like to thank Dr. Letizia Venturini from the Department of Haematology, Haemostaseology, Oncology and Stem Cell Transplantation (MHH, Hannover) for providing lentivirus for transduction of primary cells. We would like to thank Dr. Melanie Ricke-Hoch for providing cleaved caspase 3 antibody. We are thankful to Lisa Schulz for excellent technical assistance. This work was financed by the CORTISS foundation, the Deutsche Forschungsgemeinschaft (Project HA 13 06/9-1), the BMBF Project “AUREKA” and DFG Cluster of Excellence “REBIRTH”.
PY - 2019/4/1
Y1 - 2019/4/1
N2 - Implementation of tubular endothelial cell networks is a prerequisite for 3D tissue engineering of constructs with clinically relevant size as nourishment of cells is challenged by the diffusion limit. In vitro generation of 3D networks is often achieved under conditions using serum containing cell culture medium and/or animal derived matrices. Here, 3D endothelial cell networks were generated by using human umbilical vein endothelial cells (HUVECs) in combination with human adipose tissue derived stromal cells (hASCs) employing human collagen I as hydrogel and decellularized porcine small intestinal submucosa as starter matrix. Matrigel/rat tail collagen I hydrogel was used as control. Resulting constructs were cultivated either in serum-free medium or in endothelial growth medium-2 serving as control. Endothelial cell networks were quantified, tested for lumen formation, and interaction of HUVECs and hASCs. Tube diameter was slightly larger in constructs containing human collagen I compared to Matrigel/rat tail collagen I constructs under serum-free conditions. All other network parameters were mostly similar. Thereby, the feasibility of generating 3D endothelial cell networks under serum-free culture conditions in human collagen I as hydrogel was demonstrated. In summary, the presented achievements pave the way for the generation of clinical applicable constructs.
AB - Implementation of tubular endothelial cell networks is a prerequisite for 3D tissue engineering of constructs with clinically relevant size as nourishment of cells is challenged by the diffusion limit. In vitro generation of 3D networks is often achieved under conditions using serum containing cell culture medium and/or animal derived matrices. Here, 3D endothelial cell networks were generated by using human umbilical vein endothelial cells (HUVECs) in combination with human adipose tissue derived stromal cells (hASCs) employing human collagen I as hydrogel and decellularized porcine small intestinal submucosa as starter matrix. Matrigel/rat tail collagen I hydrogel was used as control. Resulting constructs were cultivated either in serum-free medium or in endothelial growth medium-2 serving as control. Endothelial cell networks were quantified, tested for lumen formation, and interaction of HUVECs and hASCs. Tube diameter was slightly larger in constructs containing human collagen I compared to Matrigel/rat tail collagen I constructs under serum-free conditions. All other network parameters were mostly similar. Thereby, the feasibility of generating 3D endothelial cell networks under serum-free culture conditions in human collagen I as hydrogel was demonstrated. In summary, the presented achievements pave the way for the generation of clinical applicable constructs.
UR - http://www.scopus.com/inward/record.url?scp=85063731768&partnerID=8YFLogxK
U2 - 10.1038/s41598-019-41985-6
DO - 10.1038/s41598-019-41985-6
M3 - Article
C2 - 30932006
AN - SCOPUS:85063731768
VL - 9
JO - Scientific Reports
JF - Scientific Reports
SN - 2045-2322
IS - 1
M1 - 5437
ER -