Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 119300 |
Seitenumfang | 15 |
Fachzeitschrift | Energy conversion and management |
Jahrgang | 324 |
Frühes Online-Datum | 27 Nov. 2024 |
Publikationsstatus | Elektronisch veröffentlicht (E-Pub) - 27 Nov. 2024 |
Abstract
Decarbonizing the heating sector is a key challenge in Europe and Germany and lags significantly behind the electricity sector regarding the share of renewable energies. This is also due to municipal heating planning being still in progress in many places, and decision-makers being uncertain about efficient technologies. We apply an advanced energy system model with linear optimization to the German energy system with special consideration of district heating. Our goal is to determine the near-optimal solution space in the heating sector, which we define as solutions within a 1% increase in optimal system cost. We show that the optimal share of district heating on the German heat demand is only 8.3%, but 27.2% of the demand can be supplied in the near-optimal solution. Larger shares are inefficient due to higher investments caused by lower heat density in sparsely populated regions. The wide range of solutions at comparable costs must encourage urban authorities to implement and communicate consistent heat planning regardless of the choice between centralized and decentralized heat supply. Direct electrification dominates both centralized and decentralized heat generation in all scenarios. Combined heat and power (CHP) plants are part of the optimal solution, but their heat production is limited by high fuel cost. It is therefore risky to plan with high shares (>20%) of CHP in heating networks. Alternative flexibility options such as water-based seasonal heat storage and the use of excess heat from power-to-x plants show promising results. They increase the district heating share in the near-optimal solution to 42.2%, but are limited by the amount of land required and the monetary value of the excess heat, respectively.
ASJC Scopus Sachgebiete
- Energie (insg.)
- Erneuerbare Energien, Nachhaltigkeit und Umwelt
- Energie (insg.)
- Kernenergie und Kernkraftwerkstechnik
- Energie (insg.)
- Feuerungstechnik
- Energie (insg.)
- Energieanlagenbau und Kraftwerkstechnik
Ziele für nachhaltige Entwicklung
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Energy conversion and management, Jahrgang 324, 119300, 15.01.2025.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Flexibility is the key to decarbonizing heat supply
T2 - A case study based on the German energy system
AU - Schlemminger, Marlon
AU - Peterssen, Florian
AU - Lohr, Clemens
AU - Niepelt, Raphael
AU - Bensmann, Astrid
AU - Brendel, Rolf
AU - Hanke-Rauschenbach, Richard
AU - Breitner, Michael H.
N1 - Publisher Copyright: © 2024 The Authors
PY - 2024/11/27
Y1 - 2024/11/27
N2 - Decarbonizing the heating sector is a key challenge in Europe and Germany and lags significantly behind the electricity sector regarding the share of renewable energies. This is also due to municipal heating planning being still in progress in many places, and decision-makers being uncertain about efficient technologies. We apply an advanced energy system model with linear optimization to the German energy system with special consideration of district heating. Our goal is to determine the near-optimal solution space in the heating sector, which we define as solutions within a 1% increase in optimal system cost. We show that the optimal share of district heating on the German heat demand is only 8.3%, but 27.2% of the demand can be supplied in the near-optimal solution. Larger shares are inefficient due to higher investments caused by lower heat density in sparsely populated regions. The wide range of solutions at comparable costs must encourage urban authorities to implement and communicate consistent heat planning regardless of the choice between centralized and decentralized heat supply. Direct electrification dominates both centralized and decentralized heat generation in all scenarios. Combined heat and power (CHP) plants are part of the optimal solution, but their heat production is limited by high fuel cost. It is therefore risky to plan with high shares (>20%) of CHP in heating networks. Alternative flexibility options such as water-based seasonal heat storage and the use of excess heat from power-to-x plants show promising results. They increase the district heating share in the near-optimal solution to 42.2%, but are limited by the amount of land required and the monetary value of the excess heat, respectively.
AB - Decarbonizing the heating sector is a key challenge in Europe and Germany and lags significantly behind the electricity sector regarding the share of renewable energies. This is also due to municipal heating planning being still in progress in many places, and decision-makers being uncertain about efficient technologies. We apply an advanced energy system model with linear optimization to the German energy system with special consideration of district heating. Our goal is to determine the near-optimal solution space in the heating sector, which we define as solutions within a 1% increase in optimal system cost. We show that the optimal share of district heating on the German heat demand is only 8.3%, but 27.2% of the demand can be supplied in the near-optimal solution. Larger shares are inefficient due to higher investments caused by lower heat density in sparsely populated regions. The wide range of solutions at comparable costs must encourage urban authorities to implement and communicate consistent heat planning regardless of the choice between centralized and decentralized heat supply. Direct electrification dominates both centralized and decentralized heat generation in all scenarios. Combined heat and power (CHP) plants are part of the optimal solution, but their heat production is limited by high fuel cost. It is therefore risky to plan with high shares (>20%) of CHP in heating networks. Alternative flexibility options such as water-based seasonal heat storage and the use of excess heat from power-to-x plants show promising results. They increase the district heating share in the near-optimal solution to 42.2%, but are limited by the amount of land required and the monetary value of the excess heat, respectively.
KW - Decarbonization of heat
KW - District heating
KW - Energy system analysis
KW - Modeling to generate alternatives
KW - Sector coupling
UR - http://www.scopus.com/inward/record.url?scp=85210067359&partnerID=8YFLogxK
U2 - 10.1016/j.enconman.2024.119300
DO - 10.1016/j.enconman.2024.119300
M3 - Article
AN - SCOPUS:85210067359
VL - 324
JO - Energy conversion and management
JF - Energy conversion and management
SN - 0196-8904
M1 - 119300
ER -