Finite Weyl groupoids

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

Externe Organisationen

  • Technische Universität Kaiserslautern
  • Philipps-Universität Marburg
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)77-108
Seitenumfang32
FachzeitschriftJournal fur die Reine und Angewandte Mathematik
Jahrgang2015
Ausgabenummer702
PublikationsstatusVeröffentlicht - 1 Mai 2015
Extern publiziertJa

Abstract

Using previous results concerning the rank two and rank three cases, all connected simply connected Cartan schemes for which the real roots form a finite irreducible root system of arbitrary rank are determined. As a consequence one obtains the list of all crystallographic arrangements, a large subclass of the class of simplicial hyperplane arrangements. Supposing that the rank is at least three, the classification yields Cartan schemes of type A and B, an infinite family of series involving the types C and D, and 74 sporadic examples.

ASJC Scopus Sachgebiete

Zitieren

Finite Weyl groupoids. / Cuntz, Michael; Heckenberger, István.
in: Journal fur die Reine und Angewandte Mathematik, Jahrgang 2015, Nr. 702, 01.05.2015, S. 77-108.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Cuntz M, Heckenberger I. Finite Weyl groupoids. Journal fur die Reine und Angewandte Mathematik. 2015 Mai 1;2015(702):77-108. doi: 10.1515/crelle-2013-0033
Cuntz, Michael ; Heckenberger, István. / Finite Weyl groupoids. in: Journal fur die Reine und Angewandte Mathematik. 2015 ; Jahrgang 2015, Nr. 702. S. 77-108.
Download
@article{e331d024bacf4ad7bf0c4872f0147912,
title = "Finite Weyl groupoids",
abstract = "Using previous results concerning the rank two and rank three cases, all connected simply connected Cartan schemes for which the real roots form a finite irreducible root system of arbitrary rank are determined. As a consequence one obtains the list of all crystallographic arrangements, a large subclass of the class of simplicial hyperplane arrangements. Supposing that the rank is at least three, the classification yields Cartan schemes of type A and B, an infinite family of series involving the types C and D, and 74 sporadic examples.",
author = "Michael Cuntz and Istv{\'a}n Heckenberger",
year = "2015",
month = may,
day = "1",
doi = "10.1515/crelle-2013-0033",
language = "English",
volume = "2015",
pages = "77--108",
journal = "Journal fur die Reine und Angewandte Mathematik",
issn = "0075-4102",
publisher = "Walter de Gruyter GmbH",
number = "702",

}

Download

TY - JOUR

T1 - Finite Weyl groupoids

AU - Cuntz, Michael

AU - Heckenberger, István

PY - 2015/5/1

Y1 - 2015/5/1

N2 - Using previous results concerning the rank two and rank three cases, all connected simply connected Cartan schemes for which the real roots form a finite irreducible root system of arbitrary rank are determined. As a consequence one obtains the list of all crystallographic arrangements, a large subclass of the class of simplicial hyperplane arrangements. Supposing that the rank is at least three, the classification yields Cartan schemes of type A and B, an infinite family of series involving the types C and D, and 74 sporadic examples.

AB - Using previous results concerning the rank two and rank three cases, all connected simply connected Cartan schemes for which the real roots form a finite irreducible root system of arbitrary rank are determined. As a consequence one obtains the list of all crystallographic arrangements, a large subclass of the class of simplicial hyperplane arrangements. Supposing that the rank is at least three, the classification yields Cartan schemes of type A and B, an infinite family of series involving the types C and D, and 74 sporadic examples.

UR - http://www.scopus.com/inward/record.url?scp=84928914685&partnerID=8YFLogxK

U2 - 10.1515/crelle-2013-0033

DO - 10.1515/crelle-2013-0033

M3 - Article

AN - SCOPUS:84928914685

VL - 2015

SP - 77

EP - 108

JO - Journal fur die Reine und Angewandte Mathematik

JF - Journal fur die Reine und Angewandte Mathematik

SN - 0075-4102

IS - 702

ER -

Von denselben Autoren