Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 233-241 |
Seitenumfang | 9 |
Fachzeitschrift | Energy Harvesting and Systems - Materials, Mechanisms, Circuits and Storage (Print) |
Jahrgang | 1 |
Ausgabenummer | 3 |
Frühes Online-Datum | 4 Sept. 2014 |
Publikationsstatus | Veröffentlicht - 1 Dez. 2014 |
Abstract
Two concepts of scaled micro-flywheel-energy-storage systems (FESSs): a flat disk-shaped and a thin ring-shaped (outer diameter equal to height) flywheel rotors were examined in this study, focusing on material selection, energy content, losses due to air friction and motor loss. For the disk-shape micro-FESS, isotropic materials like titanium, aluminum, steel and wolfram are shown to be suitable as a flywheel rotor. Wound fiber reinforced composite plastics (T1000-, T300-carbon fibers and carbon nanotubes "CNTs") were investigated for the flywheel in a ring shape. It was shown that isotropic materials reach the highest energy densities in the shape of a Laval disk with a rim. A micro-FESS with wolfram flywheel would reach the highest half-time-periods due to its high density, and thus, it is the favored material to design a flat disk-shaped micro-FESS with low standby-losses. Fiber reinforced plastic flywheels in ring shape reach the highest energy densities, from 150 W h/kg (T300) to 2,600 W h/kg (CNT), but display higher standby-losses as well. A scaling of the rotors was done within this study and showed that air friction is influenced by the shape of the examined flywheel rotors and the material. A linear correlation of down scaling and air friction losses was shown. As a motor/generator type, an ironless air coil Halbach array motor was suggested. Motor losses due to eddy currents in the stator coil were estimated. Losses correlated in square with downscaling. FESSs with wolfram and CNT showed the lowest standby-losses due to eddy currents.
ASJC Scopus Sachgebiete
- Energie (insg.)
- Erneuerbare Energien, Nachhaltigkeit und Umwelt
- Energie (insg.)
- Energieanlagenbau und Kraftwerkstechnik
- Ingenieurwesen (insg.)
- Elektrotechnik und Elektronik
- Chemie (insg.)
- Elektrochemie
Ziele für nachhaltige Entwicklung
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Energy Harvesting and Systems - Materials, Mechanisms, Circuits and Storage (Print), Jahrgang 1, Nr. 3, 01.12.2014, S. 233-241.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Feasibility Study for Small Scaling Flywheel-Energy-Storage Systems in Energy Harvesting Systems
AU - Ertz, Gabriel
AU - Twiefel, Jens
AU - Krack, Malte
PY - 2014/12/1
Y1 - 2014/12/1
N2 - Two concepts of scaled micro-flywheel-energy-storage systems (FESSs): a flat disk-shaped and a thin ring-shaped (outer diameter equal to height) flywheel rotors were examined in this study, focusing on material selection, energy content, losses due to air friction and motor loss. For the disk-shape micro-FESS, isotropic materials like titanium, aluminum, steel and wolfram are shown to be suitable as a flywheel rotor. Wound fiber reinforced composite plastics (T1000-, T300-carbon fibers and carbon nanotubes "CNTs") were investigated for the flywheel in a ring shape. It was shown that isotropic materials reach the highest energy densities in the shape of a Laval disk with a rim. A micro-FESS with wolfram flywheel would reach the highest half-time-periods due to its high density, and thus, it is the favored material to design a flat disk-shaped micro-FESS with low standby-losses. Fiber reinforced plastic flywheels in ring shape reach the highest energy densities, from 150 W h/kg (T300) to 2,600 W h/kg (CNT), but display higher standby-losses as well. A scaling of the rotors was done within this study and showed that air friction is influenced by the shape of the examined flywheel rotors and the material. A linear correlation of down scaling and air friction losses was shown. As a motor/generator type, an ironless air coil Halbach array motor was suggested. Motor losses due to eddy currents in the stator coil were estimated. Losses correlated in square with downscaling. FESSs with wolfram and CNT showed the lowest standby-losses due to eddy currents.
AB - Two concepts of scaled micro-flywheel-energy-storage systems (FESSs): a flat disk-shaped and a thin ring-shaped (outer diameter equal to height) flywheel rotors were examined in this study, focusing on material selection, energy content, losses due to air friction and motor loss. For the disk-shape micro-FESS, isotropic materials like titanium, aluminum, steel and wolfram are shown to be suitable as a flywheel rotor. Wound fiber reinforced composite plastics (T1000-, T300-carbon fibers and carbon nanotubes "CNTs") were investigated for the flywheel in a ring shape. It was shown that isotropic materials reach the highest energy densities in the shape of a Laval disk with a rim. A micro-FESS with wolfram flywheel would reach the highest half-time-periods due to its high density, and thus, it is the favored material to design a flat disk-shaped micro-FESS with low standby-losses. Fiber reinforced plastic flywheels in ring shape reach the highest energy densities, from 150 W h/kg (T300) to 2,600 W h/kg (CNT), but display higher standby-losses as well. A scaling of the rotors was done within this study and showed that air friction is influenced by the shape of the examined flywheel rotors and the material. A linear correlation of down scaling and air friction losses was shown. As a motor/generator type, an ironless air coil Halbach array motor was suggested. Motor losses due to eddy currents in the stator coil were estimated. Losses correlated in square with downscaling. FESSs with wolfram and CNT showed the lowest standby-losses due to eddy currents.
KW - energy harvester
KW - flywheel
KW - micro energy storage
KW - micro-FESS
UR - http://www.scopus.com/inward/record.url?scp=85118780818&partnerID=8YFLogxK
U2 - 10.1515/ehs-2013-0010
DO - 10.1515/ehs-2013-0010
M3 - Article
AN - SCOPUS:85118780818
VL - 1
SP - 233
EP - 241
JO - Energy Harvesting and Systems - Materials, Mechanisms, Circuits and Storage (Print)
JF - Energy Harvesting and Systems - Materials, Mechanisms, Circuits and Storage (Print)
SN - 2329-8774
IS - 3
ER -