Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 103696 |
Fachzeitschrift | Additive Manufacturing |
Jahrgang | 73 |
Frühes Online-Datum | 17 Juli 2023 |
Publikationsstatus | Veröffentlicht - Juli 2023 |
Abstract
Wire-arc directed energy deposition (DED), also known as wire-arc additive manufacturing (WAAM), is a metal 3D printing technique that is recognised for its high efficiency, cost-effectiveness, flexibility in build scales and suitability for the construction sector. However, there remains a lack of fundamental data on the structural performance of WAAM elements, especially regarding their fatigue behaviour. A comprehensive experimental study into the fatigue behaviour of WAAM steel plates has therefore been undertaken and is reported herein. Following geometric, mechanical and microstructural characterisation, a series of WAAM coupons was tested under uniaxial high-cycle fatigue loading. A total of 75 fatigue tests on both as-built and machined coupons, covering various stress ranges and stress ratios (R = 0.1, 0.2, 0.3 and 0.4), have been conducted. The local stress concentrations in the as-built coupons induced by their surface undulations have also been studied by numerical simulations. The fatigue test results were analysed using constant life diagrams (CLDs) and S-N (stress-life) diagrams, based on both nominal and local stresses. The CLDs revealed that the fatigue strength of the as-built WAAM steel was relatively insensitive to the different stress ratios. The S-N diagrams showed that the surface undulations resulted in a reduction of about 35% in the fatigue endurance limit for the as-built WAAM material relative to the machined material, and a reduction of about 60% in fatigue life under the same load level. The as-built and machined WAAM coupons were shown to exhibit similar fatigue behaviour to conventional steel butt welds and S355 structural steel plates, respectively. Preliminary nominal stress-based and local stress-based S-N curves were also proposed for the WAAM steel.
ASJC Scopus Sachgebiete
- Ingenieurwesen (insg.)
- Biomedizintechnik
- Werkstoffwissenschaften (insg.)
- Allgemeine Materialwissenschaften
- Ingenieurwesen (insg.)
- Ingenieurwesen (sonstige)
- Ingenieurwesen (insg.)
- Wirtschaftsingenieurwesen und Fertigungstechnik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Additive Manufacturing, Jahrgang 73, 103696, 07.2023.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Fatigue testing and analysis of steel plates manufactured by wire-arc directed energy deposition
AU - Huang, Cheng
AU - Li, Lingzhen
AU - Pichler, Niels
AU - Ghafoori, Elyas
AU - Susmel, Luca
AU - Gardner, Leroy
N1 - Funding Information: The authors gratefully acknowledge funding and support from the China Scholarship Council (CSC). The authors also would like to acknowledge MX3D for the fabrication of the test specimens and Mr Robert Widmann and Mr Davide Ferrari for their assistance in the research.
PY - 2023/7
Y1 - 2023/7
N2 - Wire-arc directed energy deposition (DED), also known as wire-arc additive manufacturing (WAAM), is a metal 3D printing technique that is recognised for its high efficiency, cost-effectiveness, flexibility in build scales and suitability for the construction sector. However, there remains a lack of fundamental data on the structural performance of WAAM elements, especially regarding their fatigue behaviour. A comprehensive experimental study into the fatigue behaviour of WAAM steel plates has therefore been undertaken and is reported herein. Following geometric, mechanical and microstructural characterisation, a series of WAAM coupons was tested under uniaxial high-cycle fatigue loading. A total of 75 fatigue tests on both as-built and machined coupons, covering various stress ranges and stress ratios (R = 0.1, 0.2, 0.3 and 0.4), have been conducted. The local stress concentrations in the as-built coupons induced by their surface undulations have also been studied by numerical simulations. The fatigue test results were analysed using constant life diagrams (CLDs) and S-N (stress-life) diagrams, based on both nominal and local stresses. The CLDs revealed that the fatigue strength of the as-built WAAM steel was relatively insensitive to the different stress ratios. The S-N diagrams showed that the surface undulations resulted in a reduction of about 35% in the fatigue endurance limit for the as-built WAAM material relative to the machined material, and a reduction of about 60% in fatigue life under the same load level. The as-built and machined WAAM coupons were shown to exhibit similar fatigue behaviour to conventional steel butt welds and S355 structural steel plates, respectively. Preliminary nominal stress-based and local stress-based S-N curves were also proposed for the WAAM steel.
AB - Wire-arc directed energy deposition (DED), also known as wire-arc additive manufacturing (WAAM), is a metal 3D printing technique that is recognised for its high efficiency, cost-effectiveness, flexibility in build scales and suitability for the construction sector. However, there remains a lack of fundamental data on the structural performance of WAAM elements, especially regarding their fatigue behaviour. A comprehensive experimental study into the fatigue behaviour of WAAM steel plates has therefore been undertaken and is reported herein. Following geometric, mechanical and microstructural characterisation, a series of WAAM coupons was tested under uniaxial high-cycle fatigue loading. A total of 75 fatigue tests on both as-built and machined coupons, covering various stress ranges and stress ratios (R = 0.1, 0.2, 0.3 and 0.4), have been conducted. The local stress concentrations in the as-built coupons induced by their surface undulations have also been studied by numerical simulations. The fatigue test results were analysed using constant life diagrams (CLDs) and S-N (stress-life) diagrams, based on both nominal and local stresses. The CLDs revealed that the fatigue strength of the as-built WAAM steel was relatively insensitive to the different stress ratios. The S-N diagrams showed that the surface undulations resulted in a reduction of about 35% in the fatigue endurance limit for the as-built WAAM material relative to the machined material, and a reduction of about 60% in fatigue life under the same load level. The as-built and machined WAAM coupons were shown to exhibit similar fatigue behaviour to conventional steel butt welds and S355 structural steel plates, respectively. Preliminary nominal stress-based and local stress-based S-N curves were also proposed for the WAAM steel.
KW - Directed energy deposition (DED)
KW - Experiments
KW - Fatigue life
KW - Geometric variability
KW - Metal 3D printing
KW - Stress concentrations
UR - http://www.scopus.com/inward/record.url?scp=85164572627&partnerID=8YFLogxK
U2 - 10.1016/j.addma.2023.103696
DO - 10.1016/j.addma.2023.103696
M3 - Article
AN - SCOPUS:85164572627
VL - 73
JO - Additive Manufacturing
JF - Additive Manufacturing
M1 - 103696
ER -