Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 1262 |
Seiten (von - bis) | 1-13 |
Seitenumfang | 13 |
Fachzeitschrift | FORESTS |
Jahrgang | 11 |
Ausgabenummer | 12 |
Publikationsstatus | Veröffentlicht - 27 Dez. 2020 |
Abstract
Given the ongoing climate change, estimating the amount of less degradable plant compounds that can be stored in the soil, such as lignin, is a topic of primary importance. There are few methods applicable to soils for the determination of lignin, such as the copper oxide (CuO) oxidation method (CuOL). Acetyl bromide spectrophotometric lignin (ABSL) could be a valid alternative providing information that is less detailed compared to CuOL, but it offers data on the bulk amount of lignin and may offer a valid, fast, and cheap alternative to the CuO method. The aim of this work was to compare ABSL with the CuO method on several soils receiving plant residues from different trees. Mineral soil samples from 0 to 10 cm depth were obtained from a former agricultural site in northern Italy (Brusciana, Tuscany), where different tree plantations were established 22 years ago. The plantations were white poplar and common walnut, which were also intercropped with other species such as hazelnut, Italian alder, and autumn olive. Soil samples under these plantations were also compared to soil under an adjacent agricultural field. In general, the amount of lignin in the afforested stands was approximately double than in the agricultural field as determined by either method. The two methods returned a largely different scale of values due to their different mechanisms of action. The acid-to-aldehyde ratio of syringyl structural units highlights that forest plantation provides a plant input material that is more slowly oxidatively degraded compared to arable soil. A linear mixed model proved that ABSL performed well in relation to CuOL, especially when considering the random variation in the model given by the plantation field design. In conclusion, ABSL can be considered a valid proxy of soil C pool derived from structural plant component, although further analyses are needed.
ASJC Scopus Sachgebiete
- Agrar- und Biowissenschaften (insg.)
- Forstwissenschaften
Ziele für nachhaltige Entwicklung
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: FORESTS, Jahrgang 11, Nr. 12, 1262, 27.12.2020, S. 1-13.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Fast spectrophotometric method as alternative for cuo oxidation to assess lignin in soils with different tree cover
AU - Danise, Tiziana
AU - Innangi, Michele
AU - Curcio, Elena
AU - Fioretto, Antonietta
AU - Guggenberger, Georg
PY - 2020/12/27
Y1 - 2020/12/27
N2 - Given the ongoing climate change, estimating the amount of less degradable plant compounds that can be stored in the soil, such as lignin, is a topic of primary importance. There are few methods applicable to soils for the determination of lignin, such as the copper oxide (CuO) oxidation method (CuOL). Acetyl bromide spectrophotometric lignin (ABSL) could be a valid alternative providing information that is less detailed compared to CuOL, but it offers data on the bulk amount of lignin and may offer a valid, fast, and cheap alternative to the CuO method. The aim of this work was to compare ABSL with the CuO method on several soils receiving plant residues from different trees. Mineral soil samples from 0 to 10 cm depth were obtained from a former agricultural site in northern Italy (Brusciana, Tuscany), where different tree plantations were established 22 years ago. The plantations were white poplar and common walnut, which were also intercropped with other species such as hazelnut, Italian alder, and autumn olive. Soil samples under these plantations were also compared to soil under an adjacent agricultural field. In general, the amount of lignin in the afforested stands was approximately double than in the agricultural field as determined by either method. The two methods returned a largely different scale of values due to their different mechanisms of action. The acid-to-aldehyde ratio of syringyl structural units highlights that forest plantation provides a plant input material that is more slowly oxidatively degraded compared to arable soil. A linear mixed model proved that ABSL performed well in relation to CuOL, especially when considering the random variation in the model given by the plantation field design. In conclusion, ABSL can be considered a valid proxy of soil C pool derived from structural plant component, although further analyses are needed.
AB - Given the ongoing climate change, estimating the amount of less degradable plant compounds that can be stored in the soil, such as lignin, is a topic of primary importance. There are few methods applicable to soils for the determination of lignin, such as the copper oxide (CuO) oxidation method (CuOL). Acetyl bromide spectrophotometric lignin (ABSL) could be a valid alternative providing information that is less detailed compared to CuOL, but it offers data on the bulk amount of lignin and may offer a valid, fast, and cheap alternative to the CuO method. The aim of this work was to compare ABSL with the CuO method on several soils receiving plant residues from different trees. Mineral soil samples from 0 to 10 cm depth were obtained from a former agricultural site in northern Italy (Brusciana, Tuscany), where different tree plantations were established 22 years ago. The plantations were white poplar and common walnut, which were also intercropped with other species such as hazelnut, Italian alder, and autumn olive. Soil samples under these plantations were also compared to soil under an adjacent agricultural field. In general, the amount of lignin in the afforested stands was approximately double than in the agricultural field as determined by either method. The two methods returned a largely different scale of values due to their different mechanisms of action. The acid-to-aldehyde ratio of syringyl structural units highlights that forest plantation provides a plant input material that is more slowly oxidatively degraded compared to arable soil. A linear mixed model proved that ABSL performed well in relation to CuOL, especially when considering the random variation in the model given by the plantation field design. In conclusion, ABSL can be considered a valid proxy of soil C pool derived from structural plant component, although further analyses are needed.
KW - Ancillary species
KW - Soil carbon pool
KW - Soil VSC content
KW - Spectrophotometric method
KW - Trees impact
UR - http://www.scopus.com/inward/record.url?scp=85096754976&partnerID=8YFLogxK
U2 - 10.3390/f11121262
DO - 10.3390/f11121262
M3 - Article
AN - SCOPUS:85096754976
VL - 11
SP - 1
EP - 13
JO - FORESTS
JF - FORESTS
SN - 1999-4907
IS - 12
M1 - 1262
ER -