Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 1035-1052 |
Seitenumfang | 18 |
Fachzeitschrift | Published, J. Lond. Math. Soc. |
Jahrgang | 95 |
Ausgabenummer | 3 |
Publikationsstatus | Veröffentlicht - 2017 |
Extern publiziert | Ja |
Abstract
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Allgemeine Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Published, J. Lond. Math. Soc., Jahrgang 95, Nr. 3, 2017, S. 1035-1052.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Failures of the Integral Hasse Principle for Affine Quadric Surfaces
AU - Mitankin, Vladimir
N1 - Publisher Copyright: © 2017 London Mathematical Society.
PY - 2017
Y1 - 2017
N2 - Quadric hypersurfaces are well-known to satisfy the Hasse principle. However, this is no longer true in the case of the Hasse principle for integral points, where counter-examples are known to exist in dimension 1 and 2. This work explores the frequency that such counter-examples arise in a family of affine quadric surfaces defined over the integers.
AB - Quadric hypersurfaces are well-known to satisfy the Hasse principle. However, this is no longer true in the case of the Hasse principle for integral points, where counter-examples are known to exist in dimension 1 and 2. This work explores the frequency that such counter-examples arise in a family of affine quadric surfaces defined over the integers.
KW - math.NT
KW - 11D09, 11G35, 14G99
UR - http://www.scopus.com/inward/record.url?scp=85034955333&partnerID=8YFLogxK
U2 - 10.1112/jlms.12047
DO - 10.1112/jlms.12047
M3 - Article
VL - 95
SP - 1035
EP - 1052
JO - Published, J. Lond. Math. Soc.
JF - Published, J. Lond. Math. Soc.
SN - 1469-7750
IS - 3
ER -