Facing Low Regularity in Chemotaxis Systems

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autorschaft

  • Johannes Lankeit
  • Michael Winkler

Externe Organisationen

  • Comenius University
  • Universität Paderborn
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)35-64
Seitenumfang30
FachzeitschriftJahresbericht der Deutschen Mathematiker-Vereinigung
Jahrgang122
Ausgabenummer1
PublikationsstatusVeröffentlicht - März 2020
Extern publiziertJa

Abstract

PDE systems describing chemotaxis, the directed motion of organisms in response to a chemical signal, contain a cross-diffusive term which in many cases causes the unavailability of strong regularity information. An important part of their mathematical analysis is thus concerned with their behavior in situations where solutions are known to blow-up or where singularities cannot be excluded a priori. In this note we review some results, as well as some underlying fundamental analytical ideas, from the context of rigorous blow-up detection, and discuss some approaches addressing the design of solution theories which are able to adequately cope with the possible destabilizing effects of chemotactic cross-diffusion.

ASJC Scopus Sachgebiete

Zitieren

Facing Low Regularity in Chemotaxis Systems. / Lankeit, Johannes; Winkler, Michael.
in: Jahresbericht der Deutschen Mathematiker-Vereinigung, Jahrgang 122, Nr. 1, 03.2020, S. 35-64.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Lankeit, J & Winkler, M 2020, 'Facing Low Regularity in Chemotaxis Systems', Jahresbericht der Deutschen Mathematiker-Vereinigung, Jg. 122, Nr. 1, S. 35-64. https://doi.org/10.1365/s13291-019-00210-z
Lankeit, J., & Winkler, M. (2020). Facing Low Regularity in Chemotaxis Systems. Jahresbericht der Deutschen Mathematiker-Vereinigung, 122(1), 35-64. https://doi.org/10.1365/s13291-019-00210-z
Lankeit J, Winkler M. Facing Low Regularity in Chemotaxis Systems. Jahresbericht der Deutschen Mathematiker-Vereinigung. 2020 Mär;122(1):35-64. doi: 10.1365/s13291-019-00210-z
Lankeit, Johannes ; Winkler, Michael. / Facing Low Regularity in Chemotaxis Systems. in: Jahresbericht der Deutschen Mathematiker-Vereinigung. 2020 ; Jahrgang 122, Nr. 1. S. 35-64.
Download
@article{5e526f08e32649929785b0145e3b1e46,
title = "Facing Low Regularity in Chemotaxis Systems",
abstract = "PDE systems describing chemotaxis, the directed motion of organisms in response to a chemical signal, contain a cross-diffusive term which in many cases causes the unavailability of strong regularity information. An important part of their mathematical analysis is thus concerned with their behavior in situations where solutions are known to blow-up or where singularities cannot be excluded a priori. In this note we review some results, as well as some underlying fundamental analytical ideas, from the context of rigorous blow-up detection, and discuss some approaches addressing the design of solution theories which are able to adequately cope with the possible destabilizing effects of chemotactic cross-diffusion.",
keywords = "Blow-up, Chemotaxis systems, Generalized solutions",
author = "Johannes Lankeit and Michael Winkler",
note = "Funding Information: The second author acknowledges support of the Deutsche Forschungsgemeinschaft in the context of the project Emergence of structures and advantages in cross-diffusion systems (No. 411007140, GZ: WI 3707/5-1). Publisher Copyright: {\textcopyright} 2019, Deutsche Mathematiker-Vereinigung and Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature.",
year = "2020",
month = mar,
doi = "10.1365/s13291-019-00210-z",
language = "English",
volume = "122",
pages = "35--64",
number = "1",

}

Download

TY - JOUR

T1 - Facing Low Regularity in Chemotaxis Systems

AU - Lankeit, Johannes

AU - Winkler, Michael

N1 - Funding Information: The second author acknowledges support of the Deutsche Forschungsgemeinschaft in the context of the project Emergence of structures and advantages in cross-diffusion systems (No. 411007140, GZ: WI 3707/5-1). Publisher Copyright: © 2019, Deutsche Mathematiker-Vereinigung and Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature.

PY - 2020/3

Y1 - 2020/3

N2 - PDE systems describing chemotaxis, the directed motion of organisms in response to a chemical signal, contain a cross-diffusive term which in many cases causes the unavailability of strong regularity information. An important part of their mathematical analysis is thus concerned with their behavior in situations where solutions are known to blow-up or where singularities cannot be excluded a priori. In this note we review some results, as well as some underlying fundamental analytical ideas, from the context of rigorous blow-up detection, and discuss some approaches addressing the design of solution theories which are able to adequately cope with the possible destabilizing effects of chemotactic cross-diffusion.

AB - PDE systems describing chemotaxis, the directed motion of organisms in response to a chemical signal, contain a cross-diffusive term which in many cases causes the unavailability of strong regularity information. An important part of their mathematical analysis is thus concerned with their behavior in situations where solutions are known to blow-up or where singularities cannot be excluded a priori. In this note we review some results, as well as some underlying fundamental analytical ideas, from the context of rigorous blow-up detection, and discuss some approaches addressing the design of solution theories which are able to adequately cope with the possible destabilizing effects of chemotactic cross-diffusion.

KW - Blow-up

KW - Chemotaxis systems

KW - Generalized solutions

UR - http://www.scopus.com/inward/record.url?scp=85116142595&partnerID=8YFLogxK

U2 - 10.1365/s13291-019-00210-z

DO - 10.1365/s13291-019-00210-z

M3 - Article

AN - SCOPUS:85116142595

VL - 122

SP - 35

EP - 64

JO - Jahresbericht der Deutschen Mathematiker-Vereinigung

JF - Jahresbericht der Deutschen Mathematiker-Vereinigung

SN - 0012-0456

IS - 1

ER -