Exponential stability for a mirror-symmetric three phase boundary motion by surface diffusion

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

Organisationseinheiten

Externe Organisationen

  • Universität Regensburg
  • Kyushu University
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)3-15
Seitenumfang13
FachzeitschriftMathematische Nachrichten
Jahrgang257
PublikationsstatusVeröffentlicht - 17 Juli 2003

Abstract

We apply the principle of linearized stability to prove that a stationary state is exponentially stable under a mirror-symmetric three phase boundary motion by surface diffusion. A main difficulty in the application of the linearized stability principle arises from the inhomogeneous nonlinear boundary conditions.

ASJC Scopus Sachgebiete

Zitieren

Exponential stability for a mirror-symmetric three phase boundary motion by surface diffusion. / Escher, Joachim; Garcke, Harald; Ito, Kazuo.
in: Mathematische Nachrichten, Jahrgang 257, 17.07.2003, S. 3-15.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Download
@article{ac4f671a7c9a40e2a1c9b616516a4900,
title = "Exponential stability for a mirror-symmetric three phase boundary motion by surface diffusion",
abstract = "We apply the principle of linearized stability to prove that a stationary state is exponentially stable under a mirror-symmetric three phase boundary motion by surface diffusion. A main difficulty in the application of the linearized stability principle arises from the inhomogeneous nonlinear boundary conditions.",
keywords = "Analytic semigroups, Geometric evolution equations, Nonlinear boundary conditions, Triple junction",
author = "Joachim Escher and Harald Garcke and Kazuo Ito",
year = "2003",
month = jul,
day = "17",
doi = "10.1002/mana.200310074",
language = "English",
volume = "257",
pages = "3--15",
journal = "Mathematische Nachrichten",
issn = "0025-584X",
publisher = "Wiley-VCH Verlag",

}

Download

TY - JOUR

T1 - Exponential stability for a mirror-symmetric three phase boundary motion by surface diffusion

AU - Escher, Joachim

AU - Garcke, Harald

AU - Ito, Kazuo

PY - 2003/7/17

Y1 - 2003/7/17

N2 - We apply the principle of linearized stability to prove that a stationary state is exponentially stable under a mirror-symmetric three phase boundary motion by surface diffusion. A main difficulty in the application of the linearized stability principle arises from the inhomogeneous nonlinear boundary conditions.

AB - We apply the principle of linearized stability to prove that a stationary state is exponentially stable under a mirror-symmetric three phase boundary motion by surface diffusion. A main difficulty in the application of the linearized stability principle arises from the inhomogeneous nonlinear boundary conditions.

KW - Analytic semigroups

KW - Geometric evolution equations

KW - Nonlinear boundary conditions

KW - Triple junction

UR - http://www.scopus.com/inward/record.url?scp=0043025422&partnerID=8YFLogxK

U2 - 10.1002/mana.200310074

DO - 10.1002/mana.200310074

M3 - Article

AN - SCOPUS:0043025422

VL - 257

SP - 3

EP - 15

JO - Mathematische Nachrichten

JF - Mathematische Nachrichten

SN - 0025-584X

ER -

Von denselben Autoren