Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 3-15 |
Seitenumfang | 13 |
Fachzeitschrift | Mathematische Nachrichten |
Jahrgang | 257 |
Publikationsstatus | Veröffentlicht - 17 Juli 2003 |
Abstract
We apply the principle of linearized stability to prove that a stationary state is exponentially stable under a mirror-symmetric three phase boundary motion by surface diffusion. A main difficulty in the application of the linearized stability principle arises from the inhomogeneous nonlinear boundary conditions.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Allgemeine Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Mathematische Nachrichten, Jahrgang 257, 17.07.2003, S. 3-15.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Exponential stability for a mirror-symmetric three phase boundary motion by surface diffusion
AU - Escher, Joachim
AU - Garcke, Harald
AU - Ito, Kazuo
PY - 2003/7/17
Y1 - 2003/7/17
N2 - We apply the principle of linearized stability to prove that a stationary state is exponentially stable under a mirror-symmetric three phase boundary motion by surface diffusion. A main difficulty in the application of the linearized stability principle arises from the inhomogeneous nonlinear boundary conditions.
AB - We apply the principle of linearized stability to prove that a stationary state is exponentially stable under a mirror-symmetric three phase boundary motion by surface diffusion. A main difficulty in the application of the linearized stability principle arises from the inhomogeneous nonlinear boundary conditions.
KW - Analytic semigroups
KW - Geometric evolution equations
KW - Nonlinear boundary conditions
KW - Triple junction
UR - http://www.scopus.com/inward/record.url?scp=0043025422&partnerID=8YFLogxK
U2 - 10.1002/mana.200310074
DO - 10.1002/mana.200310074
M3 - Article
AN - SCOPUS:0043025422
VL - 257
SP - 3
EP - 15
JO - Mathematische Nachrichten
JF - Mathematische Nachrichten
SN - 0025-584X
ER -