Exploiting user generated content to improve search

Publikation: Beitrag in Buch/Bericht/Sammelwerk/KonferenzbandAufsatz in KonferenzbandForschungPeer-Review

Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Titel des SammelwerksFrontiers in Artificial Intelligence and Applications
Herausgeber (Verlag)IOS Press
Seiten5
Seitenumfang1
Auflage1
ISBN (Print)9781607500285
PublikationsstatusVeröffentlicht - 2009

Publikationsreihe

NameFrontiers in Artificial Intelligence and Applications
Nummer1
Band200
ISSN (Print)0922-6389

Abstract

More and more information is available on the Web, and the current search engines do a great job to make it accessible. Yet, optimizing for a large number of users, they usually provide good answers only to "most of us", and have yet to provide satisfying mechanisms to search for audiovisual content. In this talk I will present some ongoing work at L3S addressing these challenges, done in the context of several European Union funded projects on personal information management and web search. Regarding personalization, I will talk about personalizing Web Search based on user content, which goes beyond simple user profiles used in other systems. The algorithms presented improve Web queries by expanding them with terms collected from each user's personal information repository, thus implicitly personalizing the search output. Generating the additional query keywords is done by analyzing user data at increasing granularity levels, ranging from term and compound level analysis up to global co-occurrence statistics, as well as to using external thesauri. Extensive empirical analysis shows some of these approaches to perform very well, especially on ambiguous queries, producing a very strong increase in the quality of the output rankings. Regarding search for audiovisual content, I will focus on exploiting user generated information, and discuss what kinds of tags are used for different resources and how they can help for search. Collaborative tagging has become an increasingly popular means for sharing and organizing Web resources, leading to a huge amount of user generated metadata. These tags represent different aspects of the resources they describe and it is not obvious whether and how these tags or subsets of them can be used for search. I will present an in-depth study of tagging behavior for different kinds of resources - Web pages, music, and images. The results are promising and provide more insight into both the use of different kinds of tags for improving search and possible extensions of tagging systems to support the creation of potentially search-relevant tags.

ASJC Scopus Sachgebiete

Zitieren

Exploiting user generated content to improve search. / Nejdl, Wolfgang.
Frontiers in Artificial Intelligence and Applications. 1. Aufl. IOS Press, 2009. S. 5 (Frontiers in Artificial Intelligence and Applications; Band 200, Nr. 1).

Publikation: Beitrag in Buch/Bericht/Sammelwerk/KonferenzbandAufsatz in KonferenzbandForschungPeer-Review

Nejdl, W 2009, Exploiting user generated content to improve search. in Frontiers in Artificial Intelligence and Applications. 1 Aufl., Frontiers in Artificial Intelligence and Applications, Nr. 1, Bd. 200, IOS Press, S. 5. https://doi.org/10.3233/978-1-60750-028-5-5
Nejdl, W. (2009). Exploiting user generated content to improve search. In Frontiers in Artificial Intelligence and Applications (1 Aufl., S. 5). (Frontiers in Artificial Intelligence and Applications; Band 200, Nr. 1). IOS Press. https://doi.org/10.3233/978-1-60750-028-5-5
Nejdl W. Exploiting user generated content to improve search. in Frontiers in Artificial Intelligence and Applications. 1 Aufl. IOS Press. 2009. S. 5. (Frontiers in Artificial Intelligence and Applications; 1). doi: 10.3233/978-1-60750-028-5-5
Nejdl, Wolfgang. / Exploiting user generated content to improve search. Frontiers in Artificial Intelligence and Applications. 1. Aufl. IOS Press, 2009. S. 5 (Frontiers in Artificial Intelligence and Applications; 1).
Download
@inproceedings{75269bdc134b46748aee0b592ff69504,
title = "Exploiting user generated content to improve search",
abstract = "More and more information is available on the Web, and the current search engines do a great job to make it accessible. Yet, optimizing for a large number of users, they usually provide good answers only to {"}most of us{"}, and have yet to provide satisfying mechanisms to search for audiovisual content. In this talk I will present some ongoing work at L3S addressing these challenges, done in the context of several European Union funded projects on personal information management and web search. Regarding personalization, I will talk about personalizing Web Search based on user content, which goes beyond simple user profiles used in other systems. The algorithms presented improve Web queries by expanding them with terms collected from each user's personal information repository, thus implicitly personalizing the search output. Generating the additional query keywords is done by analyzing user data at increasing granularity levels, ranging from term and compound level analysis up to global co-occurrence statistics, as well as to using external thesauri. Extensive empirical analysis shows some of these approaches to perform very well, especially on ambiguous queries, producing a very strong increase in the quality of the output rankings. Regarding search for audiovisual content, I will focus on exploiting user generated information, and discuss what kinds of tags are used for different resources and how they can help for search. Collaborative tagging has become an increasingly popular means for sharing and organizing Web resources, leading to a huge amount of user generated metadata. These tags represent different aspects of the resources they describe and it is not obvious whether and how these tags or subsets of them can be used for search. I will present an in-depth study of tagging behavior for different kinds of resources - Web pages, music, and images. The results are promising and provide more insight into both the use of different kinds of tags for improving search and possible extensions of tagging systems to support the creation of potentially search-relevant tags.",
author = "Wolfgang Nejdl",
year = "2009",
doi = "10.3233/978-1-60750-028-5-5",
language = "English",
isbn = "9781607500285",
series = "Frontiers in Artificial Intelligence and Applications",
publisher = "IOS Press",
number = "1",
pages = "5",
booktitle = "Frontiers in Artificial Intelligence and Applications",
address = "Netherlands",
edition = "1",

}

Download

TY - GEN

T1 - Exploiting user generated content to improve search

AU - Nejdl, Wolfgang

PY - 2009

Y1 - 2009

N2 - More and more information is available on the Web, and the current search engines do a great job to make it accessible. Yet, optimizing for a large number of users, they usually provide good answers only to "most of us", and have yet to provide satisfying mechanisms to search for audiovisual content. In this talk I will present some ongoing work at L3S addressing these challenges, done in the context of several European Union funded projects on personal information management and web search. Regarding personalization, I will talk about personalizing Web Search based on user content, which goes beyond simple user profiles used in other systems. The algorithms presented improve Web queries by expanding them with terms collected from each user's personal information repository, thus implicitly personalizing the search output. Generating the additional query keywords is done by analyzing user data at increasing granularity levels, ranging from term and compound level analysis up to global co-occurrence statistics, as well as to using external thesauri. Extensive empirical analysis shows some of these approaches to perform very well, especially on ambiguous queries, producing a very strong increase in the quality of the output rankings. Regarding search for audiovisual content, I will focus on exploiting user generated information, and discuss what kinds of tags are used for different resources and how they can help for search. Collaborative tagging has become an increasingly popular means for sharing and organizing Web resources, leading to a huge amount of user generated metadata. These tags represent different aspects of the resources they describe and it is not obvious whether and how these tags or subsets of them can be used for search. I will present an in-depth study of tagging behavior for different kinds of resources - Web pages, music, and images. The results are promising and provide more insight into both the use of different kinds of tags for improving search and possible extensions of tagging systems to support the creation of potentially search-relevant tags.

AB - More and more information is available on the Web, and the current search engines do a great job to make it accessible. Yet, optimizing for a large number of users, they usually provide good answers only to "most of us", and have yet to provide satisfying mechanisms to search for audiovisual content. In this talk I will present some ongoing work at L3S addressing these challenges, done in the context of several European Union funded projects on personal information management and web search. Regarding personalization, I will talk about personalizing Web Search based on user content, which goes beyond simple user profiles used in other systems. The algorithms presented improve Web queries by expanding them with terms collected from each user's personal information repository, thus implicitly personalizing the search output. Generating the additional query keywords is done by analyzing user data at increasing granularity levels, ranging from term and compound level analysis up to global co-occurrence statistics, as well as to using external thesauri. Extensive empirical analysis shows some of these approaches to perform very well, especially on ambiguous queries, producing a very strong increase in the quality of the output rankings. Regarding search for audiovisual content, I will focus on exploiting user generated information, and discuss what kinds of tags are used for different resources and how they can help for search. Collaborative tagging has become an increasingly popular means for sharing and organizing Web resources, leading to a huge amount of user generated metadata. These tags represent different aspects of the resources they describe and it is not obvious whether and how these tags or subsets of them can be used for search. I will present an in-depth study of tagging behavior for different kinds of resources - Web pages, music, and images. The results are promising and provide more insight into both the use of different kinds of tags for improving search and possible extensions of tagging systems to support the creation of potentially search-relevant tags.

UR - http://www.scopus.com/inward/record.url?scp=73149099677&partnerID=8YFLogxK

U2 - 10.3233/978-1-60750-028-5-5

DO - 10.3233/978-1-60750-028-5-5

M3 - Conference contribution

AN - SCOPUS:73149099677

SN - 9781607500285

T3 - Frontiers in Artificial Intelligence and Applications

SP - 5

BT - Frontiers in Artificial Intelligence and Applications

PB - IOS Press

ER -

Von denselben Autoren