Experimental temperature—X(H2O)–viscosity relationship for leucogranites and comparison with synthetic silicic liquids

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

Organisationseinheiten

Externe Organisationen

  • University of Missouri
  • Institut de Physique du Globe de Paris (IPGP)
  • Centre national de la recherche scientifique (CNRS)
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)59-71
Seitenumfang13
FachzeitschriftTransactions of the Royal Society of Edinburgh, Earth Sciences
Jahrgang95
Ausgabenummer1-2
PublikationsstatusVeröffentlicht - März 2004

Abstract

Viscosities of liquid albite (NaAlSi3O8) and a Himalayan leucogranite were measured near the glass transition at a pressure of one atmosphere for water contents of 0, 2·8 and 3·4 wt.%. Measured viscosities range from 1013·8 Pa. s at 935 K to 109·0 Pa. s at 1119 K for anhydrous granite, and from 1010·2 Pa. s at 760 K to 1012·9 Pa. s at 658 K for granite containing 3·4 wt.% H2O. The leucogranite is the first naturally occurring liquid composition to be investigated over the wide range of T-X(H2O) conditions which may be encountered in both plutonic and volcanic settings. At typical magmatic temperatures of 750°C, the viscosity of the leucogranite is 1011·0 Pa. s for the anhydrous liquid, dropping to 106·5 Pa. s for a water content of 3 wt.% H2O. For the same temperature, the viscosity of liquid NaAlSi3O8 is reduced from 1012·2 to 106·3 Pa. s by the addition of 1·9 wt.% H2O. Combined with published high-temperature viscosity data, these results confirm that water reduces the viscosity of NaAlSi3O8 liquids to a much greater degree than that of natural leucogranitic liquids. Furthermore, the viscosity of NaAlSi3O8 liquid becomes substantially nonArrhenian at water contents as low as 1 wt.% H2O, while that of the leucogranite appears to remain close to Arrhenian to at least 3 wt.% H2O, and viscosity—temperature relationships for hydrous leucogranites must be nearly Arrhenian over a wide range of temperature and viscosity. Therefore, the viscosity of hydrous NaAlSi3O8 liquid does not provide a good model for natural granitic or rhyolitic liquids, especially at lower temperatures and water contents. Qualitatively, the differences can be explained in terms of configurational entropy theory because the addition of water should lead to higher entropies of mixing in simple model compositions than in complex natural compositions. This hypothesis also explains why the water reduces magma viscosity to a larger degree at low temperatures, and is consistent with published viscosity data for hydrous liquid compositions ranging from NaAlSi3O8 and synthetic haplogranites to natural samples. Therefore, predictive models of magma viscosity need to account for compositional variations in more detail than via simple approximations of the degree of polymerisation of the melt structure.

ASJC Scopus Sachgebiete

Zitieren

Experimental temperature—X(H2O)–viscosity relationship for leucogranites and comparison with synthetic silicic liquids. / Whittington, Alan; Richet, Pascal; Behrens, Harald et al.
in: Transactions of the Royal Society of Edinburgh, Earth Sciences, Jahrgang 95, Nr. 1-2, 03.2004, S. 59-71.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Download
@article{adc8dbeec78d4e68a49de8479bcd658f,
title = "Experimental temperature—X(H2O)–viscosity relationship for leucogranites and comparison with synthetic silicic liquids",
abstract = "Viscosities of liquid albite (NaAlSi3O8) and a Himalayan leucogranite were measured near the glass transition at a pressure of one atmosphere for water contents of 0, 2·8 and 3·4 wt.%. Measured viscosities range from 1013·8 Pa. s at 935 K to 109·0 Pa. s at 1119 K for anhydrous granite, and from 1010·2 Pa. s at 760 K to 1012·9 Pa. s at 658 K for granite containing 3·4 wt.% H2O. The leucogranite is the first naturally occurring liquid composition to be investigated over the wide range of T-X(H2O) conditions which may be encountered in both plutonic and volcanic settings. At typical magmatic temperatures of 750°C, the viscosity of the leucogranite is 1011·0 Pa. s for the anhydrous liquid, dropping to 106·5 Pa. s for a water content of 3 wt.% H2O. For the same temperature, the viscosity of liquid NaAlSi3O8 is reduced from 1012·2 to 106·3 Pa. s by the addition of 1·9 wt.% H2O. Combined with published high-temperature viscosity data, these results confirm that water reduces the viscosity of NaAlSi3O8 liquids to a much greater degree than that of natural leucogranitic liquids. Furthermore, the viscosity of NaAlSi3O8 liquid becomes substantially nonArrhenian at water contents as low as 1 wt.% H2O, while that of the leucogranite appears to remain close to Arrhenian to at least 3 wt.% H2O, and viscosity—temperature relationships for hydrous leucogranites must be nearly Arrhenian over a wide range of temperature and viscosity. Therefore, the viscosity of hydrous NaAlSi3O8 liquid does not provide a good model for natural granitic or rhyolitic liquids, especially at lower temperatures and water contents. Qualitatively, the differences can be explained in terms of configurational entropy theory because the addition of water should lead to higher entropies of mixing in simple model compositions than in complex natural compositions. This hypothesis also explains why the water reduces magma viscosity to a larger degree at low temperatures, and is consistent with published viscosity data for hydrous liquid compositions ranging from NaAlSi3O8 and synthetic haplogranites to natural samples. Therefore, predictive models of magma viscosity need to account for compositional variations in more detail than via simple approximations of the degree of polymerisation of the melt structure.",
keywords = "Aluminosilicate liquid, configurational entropy, granite, rheology, rhyolite, water",
author = "Alan Whittington and Pascal Richet and Harald Behrens and Fran{\c c}ois Holtz and Bruno Scaillet",
note = "Copyright: Copyright 2017 Elsevier B.V., All rights reserved.",
year = "2004",
month = mar,
doi = "10.1017/S0263593300000924",
language = "English",
volume = "95",
pages = "59--71",
journal = "Transactions of the Royal Society of Edinburgh, Earth Sciences",
issn = "0263-5933",
publisher = "Cambridge University Press",
number = "1-2",

}

Download

TY - JOUR

T1 - Experimental temperature—X(H2O)–viscosity relationship for leucogranites and comparison with synthetic silicic liquids

AU - Whittington, Alan

AU - Richet, Pascal

AU - Behrens, Harald

AU - Holtz, François

AU - Scaillet, Bruno

N1 - Copyright: Copyright 2017 Elsevier B.V., All rights reserved.

PY - 2004/3

Y1 - 2004/3

N2 - Viscosities of liquid albite (NaAlSi3O8) and a Himalayan leucogranite were measured near the glass transition at a pressure of one atmosphere for water contents of 0, 2·8 and 3·4 wt.%. Measured viscosities range from 1013·8 Pa. s at 935 K to 109·0 Pa. s at 1119 K for anhydrous granite, and from 1010·2 Pa. s at 760 K to 1012·9 Pa. s at 658 K for granite containing 3·4 wt.% H2O. The leucogranite is the first naturally occurring liquid composition to be investigated over the wide range of T-X(H2O) conditions which may be encountered in both plutonic and volcanic settings. At typical magmatic temperatures of 750°C, the viscosity of the leucogranite is 1011·0 Pa. s for the anhydrous liquid, dropping to 106·5 Pa. s for a water content of 3 wt.% H2O. For the same temperature, the viscosity of liquid NaAlSi3O8 is reduced from 1012·2 to 106·3 Pa. s by the addition of 1·9 wt.% H2O. Combined with published high-temperature viscosity data, these results confirm that water reduces the viscosity of NaAlSi3O8 liquids to a much greater degree than that of natural leucogranitic liquids. Furthermore, the viscosity of NaAlSi3O8 liquid becomes substantially nonArrhenian at water contents as low as 1 wt.% H2O, while that of the leucogranite appears to remain close to Arrhenian to at least 3 wt.% H2O, and viscosity—temperature relationships for hydrous leucogranites must be nearly Arrhenian over a wide range of temperature and viscosity. Therefore, the viscosity of hydrous NaAlSi3O8 liquid does not provide a good model for natural granitic or rhyolitic liquids, especially at lower temperatures and water contents. Qualitatively, the differences can be explained in terms of configurational entropy theory because the addition of water should lead to higher entropies of mixing in simple model compositions than in complex natural compositions. This hypothesis also explains why the water reduces magma viscosity to a larger degree at low temperatures, and is consistent with published viscosity data for hydrous liquid compositions ranging from NaAlSi3O8 and synthetic haplogranites to natural samples. Therefore, predictive models of magma viscosity need to account for compositional variations in more detail than via simple approximations of the degree of polymerisation of the melt structure.

AB - Viscosities of liquid albite (NaAlSi3O8) and a Himalayan leucogranite were measured near the glass transition at a pressure of one atmosphere for water contents of 0, 2·8 and 3·4 wt.%. Measured viscosities range from 1013·8 Pa. s at 935 K to 109·0 Pa. s at 1119 K for anhydrous granite, and from 1010·2 Pa. s at 760 K to 1012·9 Pa. s at 658 K for granite containing 3·4 wt.% H2O. The leucogranite is the first naturally occurring liquid composition to be investigated over the wide range of T-X(H2O) conditions which may be encountered in both plutonic and volcanic settings. At typical magmatic temperatures of 750°C, the viscosity of the leucogranite is 1011·0 Pa. s for the anhydrous liquid, dropping to 106·5 Pa. s for a water content of 3 wt.% H2O. For the same temperature, the viscosity of liquid NaAlSi3O8 is reduced from 1012·2 to 106·3 Pa. s by the addition of 1·9 wt.% H2O. Combined with published high-temperature viscosity data, these results confirm that water reduces the viscosity of NaAlSi3O8 liquids to a much greater degree than that of natural leucogranitic liquids. Furthermore, the viscosity of NaAlSi3O8 liquid becomes substantially nonArrhenian at water contents as low as 1 wt.% H2O, while that of the leucogranite appears to remain close to Arrhenian to at least 3 wt.% H2O, and viscosity—temperature relationships for hydrous leucogranites must be nearly Arrhenian over a wide range of temperature and viscosity. Therefore, the viscosity of hydrous NaAlSi3O8 liquid does not provide a good model for natural granitic or rhyolitic liquids, especially at lower temperatures and water contents. Qualitatively, the differences can be explained in terms of configurational entropy theory because the addition of water should lead to higher entropies of mixing in simple model compositions than in complex natural compositions. This hypothesis also explains why the water reduces magma viscosity to a larger degree at low temperatures, and is consistent with published viscosity data for hydrous liquid compositions ranging from NaAlSi3O8 and synthetic haplogranites to natural samples. Therefore, predictive models of magma viscosity need to account for compositional variations in more detail than via simple approximations of the degree of polymerisation of the melt structure.

KW - Aluminosilicate liquid

KW - configurational entropy

KW - granite

KW - rheology

KW - rhyolite

KW - water

UR - http://www.scopus.com/inward/record.url?scp=15444364580&partnerID=8YFLogxK

U2 - 10.1017/S0263593300000924

DO - 10.1017/S0263593300000924

M3 - Article

AN - SCOPUS:15444364580

VL - 95

SP - 59

EP - 71

JO - Transactions of the Royal Society of Edinburgh, Earth Sciences

JF - Transactions of the Royal Society of Edinburgh, Earth Sciences

SN - 0263-5933

IS - 1-2

ER -

Von denselben Autoren